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PREFACE

As engineers have conceived and designed space missions from

Earth to other planets in the solar system, they have found it necessary

to develop new areas of technology and utilize techniques from these

areas in conjunction with classical scientific methods. For example, in

the study of the guidance of outer space vehicles, engineers are faced

with two primary problems: (1) that of determining the motion of a space

vehicle under the gravitational influence of the surrounding celestial

bodies, and (2) that of determining a method for guiding the spacecraft

such that the given mission objectives are met in the best manner. The

first of these problems can be handled with the classical methods of

celestial mechanics, but the solution to the second problem requires

concepts from the relatively new field of optimal control theory.

The results of space missions which have been performed at the time

of this writing indicate that there is a third problem in space guidance

(S) which is as important as the other two. The problem is that of guiding

a space vehicle accurately in the presence of disturbances, acting on the

spacecraft, which do not obey strict deterministic laws. The existance

of such disturbances is indicated by the inability of engineers in

predicting accurately spacecraft trajectories in past space missions

One method of dealing _th such random disturbances is to model the

behavior of a disturbance as a stochastic process, and determine the

statistics of the process by experiments made a priori to the space flight°
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The techniques of optimal control theory and celestial mechanics can then

be used along with the probabilistic concepts from the thdory of stochastic

processes in order to design a space vehicle guidance procedure which

takes into account the expected effects of the disturbance process on the

spacecraft. A contrel procedure developed in this manner is called an

optimal stochastic cmtrol.

The purpose of this dissertation is to mmlyze the general space

guidance problem (I, 2, 3) and develop an optimal stochastic control progrsm

for interplanetary spacecraft guidance. It is hoped that the investi-

gation is a reasonable integration of the disciplines of stochastic processes,

optimal control theory, and celestial mechanics, into one research effort.

This dissertation could not have been realized without innumerable

contributions from several persons. The author wishes to thank Dr.

B. D. Tapley of The University of Texas for supervising the research and

making many helpful suggestions regarding the manuscript preparation. He

also wishes to thank Dr. L. G. Clark, Dr. P. L. Ode11, and Dr. E_ J. Prouse

for serving on the dissertation committee. The author is indebted to

E. L. Davis, Jr., and E o H. Brock of the Manned Spacecraft Center for

providing an academic environment in which the mm_rical studies could be

performed. He is also indebted to Dr. J. M. Lewallen for his suggestions

regarding the numerical work. The author would like to express his

gratitude to R. Do Witty of Lockheed Electronics Company for his dedicated

assistance with the computer progr_s and would also like to express his

gratitude to J o Rodriquez of The University of Texas for his help with the

trajectory simulationo The author would like to thank Co G. Pfei£fer

of the Jet Propulsion Laboratory for his helpful suggestions during the

initial phases of the investigation.
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OMFTER 1

INTROIXETION

Preliminary Remarks

During recent years there has been a remarkable growth of interest in

problems associated with the optimal control of nonlinear dynamic systems.

A great part of the motivation toward developing techniques in control

theory lies in its important applications to space guidance theory. Since

space missions, in general, require the use Of great amounts Of" energy and

require long times of travel, the necessity of performing spacecraft

guidance manurers in an optimal manner is paraamunt. Most of the effort

which has gone into the development of control theory as a tool for the

astrodynamicist has been concerned with deteministic dynamic models.

This assumption may prove to be too idealistic for reasonable applicability

of optimal control theory to space guidance problems° The purpose of this

work is to examine the effects of noise on a nonlinear dynamic system, to

extend the variational techniques of optimal deterministic control theory

to the control of a stochastic dynamic system, and to apply the results

to a simulated interplanetary transfer guidance problem° The theoretical

results will be. derived for a general nonlinear multidimensional dynamic

system.. In the notation used, vector quantities will be subscripted, and

repeated subscripts will imply summation unless stated otherwise.

Numerical results are obtained for the example problem by using a digital

computer.

Deterministic Control Theory

Deterministic control theor_ is concerned with the control of

dynamic systems whose motion is described by the set of nonlinear



differential equations

xi ( ) fi ( t) i =t = x, u, i,. •. n (I.i)

The xi(t ) are components of the n dimensional state of the system

and the ui(t ) , i = I,..., m are components of the m dimensional

control, where m < n. If the control ui(t )

sense, over some time interval, to < t < tf,

functional of the state and control, i.e.,

is to be optimal, in some

a performance index'

tf

I[u] = Ifn+l(X , u, t) at
(1.2)

t o

ntst be extremized subject to the constraints that Equation (i.I) be

satisfied at all points in time for t o < t < tf, and that the state

xi(t) be specified at t O and tf ,i.e.,

xi(to) = xi0

xi(tf) = xif (i.3)

The extremization of the functional given in'F.quation (1.2) my"

be carried out by a calculus of variations technique. A formal

development of the variational method as applied to the optimal control

problem is presented in Appendix A.

Stochastic Control Theo_

Stochastic control theory is concerned with control of dynamic

systems which in some sense are random. The motion of such a system



can be described by the following set of differential equations

5

}ift) -- fifxft), uft), n(t), t) (1.4)

where ni(t ) may be a malti_ional random process which could be

caused by one or more of the following phenommm:

a. unknown parameters in the dynamic model

b o unpredictable external disturbances

c. random noise in the controls

d. uncertainties in initial conditions°

If the control ui(t ) is .to be opt_l, then it is desired that

the control be selected to extremize the f_nctional given in Equation

(1.2). However, due to the presence of the noise hi(t) in the equations

of motion (1o4), the functional given in Equation (1.2) is a random

quantity, whose value .depends on the particular noise function which is

manifested during the time interval to __ t i tf. Since it is not

possible to predict the value of the functionaL1 given in F.quation (1.2}

before the occprrence of the noise, a control which extremizes the

functional cannot be realized a priori. It is therefore desirable that

the control be selected to extremize some deterministic quantity asso-

ciated with the performance index functional. Several authors, among

them Kustmer (Re£o 1), Lass (P_f. 2), Wonham (Re£. 5), and Tung (Ref. 4),

have suggested that the control be selected to extremize the statisticaL1

average, or the expected value, of the functional given in Equation

(1o2}, i.eo,

t£

I[u] = P. Ifn+l(X , u, t) dt (1.5)

to



where E is the expected value operator, and the expected value is

taken with respect to the random process ni(t) o The functional

given in Equation (1 °5)can be thought of as the average of the

functional given in Equation (1,2) over a great number of trials. It

is reasonable that the control which extremzes an average over tony

trials will yield an approximate extre_l in a particalar case.

Previous studies have been made (see Wonham (Ref. 3), and Tung

(_efo 4) ) in which an optimal stochastic control is computed by means

of the dynamic pro_ method. The condition which the dptiml

control must s_tisfT takes the form of a partial differential equation

which is very difficult to solve. Kushner (Ref. 5, 6, 7, 8), and Lass

(Befo 2) have presented a calculus of variations approach for determin-

ing the optimal stochastic control, which is analogous to the deter-

ministic calculus of variations mthod. Kushner (P_fo 1) has applied

the approach to a nonlinear control problem in which additive external

noise occurs in the d_amic process at discrete points in time.

The Problm To Be Studied

In this study, stochastic systems which contain small continuous

additive noise in the controls, as well as small uncertainties in the

initial conditions, will be considered. The conditions which the control

_Jst satisfy for optimality of the functional given in Equation (1.5)

are derived by using the stochastic variational approach. The variation

of the functional given,in Equation (1.5) is carried out with the

constraints that the equation of motion (1.4) must be satisfied at all

points of time in the controlling interval, and that the expected value

_f the state, xi(t), is specified at t o and tf , ioeo,



E [xi(to) ] - xio

E [xi(tf)] = xif (1o6)

5

Application To A Space Guidance Problem

The exaple picked to illustrate the theory is that of a contin'uous-

ly thrusting ion-engine space vehicle, traveling on a minimum time Barth-

to-Mars transfer. The state of the system consists of the position and

velocity coordinates o£.the spacecraft, and the controls are the magnitude

of the engine thrust per unit mass and the thrust orientation angle.

The thrust/mass magnitude is considered as a control in the sense that

it is a parameter in the forcing fumction of the equations of motion. The

thrust orientation angle is a true control in the sense that it can be

varied to guide the spacecraft. It should be noted that noise is assumed

to occur in the thrust/mass magnitude and/or thrust orientation angle.

The vehicle model is simplified to a point mass, and the equations of motion

exclude all effects other than those due to the engine and the gravitational

attraction of the sun. The orbital planes of the Earth and Mars are assumed

to coincide, and the spacecraft trajectory as well as the noise errors are

assumed to occur in that plane. Therefore the analysis is carried out in

two dimm_ions_

Outline of the

In Chapter 2, a model for the disturbing noise is developed, and

its applicability to the controls of a space vehicle is discussed. The

main difference between the noise model assumed in this work and the

noise model used in previous studies is that for this problem noise which

is autocorrelated in time will be considered. It is felt that time
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correlated noise is more representative o£ physical pheno_a than

uncorrelated or '_hite" noise.

Qmpter 5 is amcerned with the effect of autocorrelated noise

on an opti_al detemnnistic trajectory. The effects are examined by

deriving differential equations which describe the time histories of the

means and standard deviations of the state errors resulting £rem the

perturbinE-noiseo These means and standard deviations are comguted for

the P_arth-Mars transfer problem, and the results are compared with the

results obtained by taking averages over several Monte Carlo simulated

trajectories. ,

In Ompter 4 the optimal stochastic contrel is found by extremi-

zing a functicrml of the type given in Equatien (1o5) by applying a

stochastic calculus of variations technique. The solution takes the

form o£ an expected value over the necessary conditions which result

from the variational problem. Then the stochastic solution is expanded

about the deterministic necessary conditions and a corrective optiml

control program is derived. Since the perturbing noise is assm_d

stall, the expansions are carried out only to second order. The results

obtained by applying the control program to the Earth-Hats transfer are

presented at the end of the chapter.

In Chapter 5, the problem of finding the optimal stochastic control,

conditioned on in£omation about the state of the system gained during

flight, is treated. A range-rate type observation, which contains

additive error noise, is made at discrete points in time, and conditional

means of the system state components are computed° The scheme includes

the computation of conditional means of the noise occurring in the

system at the times o£ observations, as well as the computation of



conditiocml means of the state components. An optimal control

correcticm is made after each observation. This closed-loop centrol

scheme reduces the standard deviations o£ the state components while

increasing .the degree o£ optimlity of the control.

A smmm_ of the results and a list of possible extensiens

to this work appear in Chapter 6.

7



O_v[£R 2

FO_LKATION OF THE NOISE MOIEL

Characteristics of the Perturbing Noise

Consider the dynmnic system which obeys the differential equations

of motion

ii = fi(x,u. ,. t) i - I..+..n (2.1)

The ni(t ) are components of multidimensional additive noise in

the controls ui(t ) . In order to analyze, in a precise manner, the

behavior of a dynamic system such as that described by Equation (2.1),

some of the statistics/properties of the noise hi(t) n_st be known.

Since, in thecase of noise occurring in the controls of continuously

thrusting space vehicle, these properties are not known, certain intui-

tive assumptions about hi(t) must be made. It is desirable that

hi(t) possess the following properties:

l. ni(t ) should possess a unimods/ bell-shaped probability

density function° This implies ,that small values of the

noise are expected to occur more often than large values.

2. ni(t ) should be unbiased, i.e., the statistical average

of the noise should tend to zero+

3. ni(t ) should be autocorrelated in time. This is desirable

since some control noise could be internally generated by

mechanics/ failures.

4. ni(t ) should be a stationary process. This implies that

the variance of the noise is expected to remain constant in

time.

8



The __hmstein-Uhlenbeck Stochastic Process

A stochastic process which fits the preceding description was

introduced by Ornstein and L_lenbeck as a model for the velocity of a

particle undergoing a Brown.an motion (see Ref. 9) o Let n(t) be a

scalar example of this process. The statistical properties of the

Ornstein Uhlenbeck (OoUo) process are defined by the following relations:

. The probability density function is

?(nCt) ) = z e
t-Z;a

(2.2)

.

where o is the standard deviation of the process. From

Equation (2.2), it follows that _(n (t)) is unimodal

and bell-shaped.

E [nCt) ] = /nCt) f(nCt) ) dt -- 0 (2.3}

The O. U o process is unbiased.

2 -_ltz-tll
3. E [net1} net 2) ] = RCt 1, t2) = o e (2.4)

9

The process is exponentially autocorrelated in time, and

since RCtl, t2) depends only on the time difference

(t2-tl), n(t) is stationary.

It will be instructive to examine further the properties of the

O. U. process and its effect on a simple linear dynamic system. The

Oo U. process obeys a Langevin equation of the following type



(t)+Bn(t) = w(t) (ZoS)

I0

where w(t) is _ussian white noise, that is,

_.[wCt)] = o CZ.6)

E [W(tl) w(t 2) ] = Q 6(t2-t 1) (z.7)

where Q is the variance of w(t) and 6(t2-t1} is the IRrac delta

function° A solution-of, the Langevin equation can be written, in terms

of a stochastic integral, in the form

t

;B(t-t O) fe-B(t-,)n(t) = e n(to) + w(,) d, (2.8)

to

It will be helpful to digress for a moment from the current line of

reasoning, in order to develop an important property of the stochastic

integral. It is known (see P_£. 1O) that if x is a random variable

distributed according to the density function f(x) and g(x) is

some function of x _ then

OD
#i

E (gCx)] = IgCx)fCx) dx CZ.9)

If then g(t) is some functional of the random process, x(z) say

t

g(t} -- fh(x(z))d,

0

(2.1o)



ti_n g(t) depends on the entire function x(T), 0 < T < t, i.e.,

11

g(t) -- gCxC'rl) , xC.r2) , ..., xC.ri) ' ... ) (2._)

where T i runs over all points in time. The expected value of g(t)

can then take the form

F. [g(t) ]

oo

._-/.../
--m --m

- t

hCx(z)dxfCx(T1), xCT2), ...)dX(Tl)dXCT2)...

0

Now, if the integration process is visualized as the limit of a sum,

P_uation (2.12) can be expressed as follows:

(2.12)

E[g(t)]

.(m oD

= .... Lira hCxCTi)
n_-il

)ATifCxCT I) ,...)dX(+l) •.• (2.13)

Taking the stmmtion outside of the integration over the random variables

x(T I) , X(T 2) , ....... , will lead to

n

E[g(t)] -- Lira r.
n_ i-1 If: f" ]• .. hCxCT xC ),...)dXCTl)... A'r i C2.14)

Now, on converting the smtior back to an integral, the following re-

suit is obtained

t

E [g(t) ] = JE h(x(T) ) dT (2.15)
i#

0

Thus the expected value operator and the stochastic inte_al commte.

. This property will be used extensively in discussions given in Chapters



5, 4, and 5. It should also be noted that if Equatim_ (2.15) is

differentiated with respect to t the £ollowing expression is obtained.

12

E[gCt)] = E hCxCt)) = F (2.16)

Thus the expected value operator and the derivative commute.

Returning to Equation (2.8), and using the notation

E(-) =

it follows that

_(t) = e-SCt't0)_Ct0 )

t

if0-s(t-T)
+ e WCT) dT (2.17)

Now since wCT) = 0 Equation (2.7) reduces to

-SCt-t0)

_(t) = e _(t0) (2.18)

Thus, if for any O.U. process _(to) = 0, then _(t) = 0

for all t >_t O-

Now consider the autocorrelation properties of the O. U. process.

Note that n (t 1) n (t 2) can be expressed as £ollows :

-BCtz-t O) -BCti-t O)

n(tI)net 2) -- e e n (tO) nCt O) +

f -B (tl-') B(t2-P)

[ e n(t0)w(T)dT + n(t0)w(p)d O
t

"SCtl"T)e-S(t2-P)w(o)w(,) dp dT

-t o _t 0

(2.19)
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By taking the expected value of Equation (2.19) and imposing the condition

that E (w(T)n(t0)) = 0, the following expression is obtained.

-B(tl-t O)-B(t2-t O)
E [n(t1)n(t 2)] = R(tl, t2) = e R(t O,tO) +

tlf:2B (tI-T)-B (t2-P)Q 6 (t2-tl) dTclp

to to

(2.20)

Carrying out the integration of Equation (2.20) leads to the follow-

ing expression,

-S[t2-tl[ -B (tl+t2)+2St0
R(t 1,t 2) - _e + [ R(t0't0) -_'S ] e (2.21)

Stationarity of the process, i.e., R(t 1,t2) = R(It2-t 1[)

that R(t0't0) = _8 hence

requires

-BIt2"t 1 I
R(tl,t 2) = _e (2.22)

In view of Equation (2.4), Equation (2.22) leads to

R(t,t) = 02 = _eS-s (2.23)

Sample functions of the O. U. process can be generated with the aid

of a nomal random number generator. Consider the statistics of

n(t) when n(t0) is known. It follows then, that

-(3(t-t0)

E [n(t) ln(to)] = e n(t o) (2.24)



and

E [(nCt) - ECnCt)InCtJ)_lnCto)__

1A

//'] e-BCt-T)e'B(t-P)= Q 6 (T-p)dpdT

to to (2.25)

CanNing out the integration will lead to

o21n(t0) = _8.8 El-e'28Ct'to) 1 (2.26)

Hence, the conditional density function is given as follows (see Ref. 9)

1 Ct)__-n--(t-)I n (to)

fCnCt)lnCt0) ) _ 1 e L olnCto) (2.27)
olnCt0)

If the output of a random ntmber generator, xi, is indepen-

dently distributed according to the density function

- ½(xi)z

f(x i) = l-l- e (2.28)

Then a sample function n (t) can be discretely generated by the

recursion relation

, -S(ti+l-ti)
n(ti+ I) = xi+ 1 o /i- e-lB(ti+l-ti)+ n(ti) e (2.29)

where net 0) = x0o . Figure 1 illustrates such a sample function, where

the numerical results were generated with Equation (2.29) for the values

a = 1 and S = .01.
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Figure 1. A Simulation of the Orastein._lenbeck Stochastic Process

(_o = 1, 13= .01)



Application To A Simple Linear l_c System

The effect on a dynamic system of a random noise process such

as the O. U. process can be shown by the £ollowing example. Consider

the following system of equations, in which a particle of unit mass

undergoes one d_ional motion under the influence of an O. U.

process acceleration.

15

Such motion is described by the following equations,

(z.30)

where the initial conditions are specified as

v(t0) = 0

x(to) = 0

t o = 0

The solutions for v(t) and x(t) can be expressed as integrals which

depend on the stochastic forcing function, i.e.,

v(t) =

x(t) =

t

u(T) dT

rico) do &
(2.31)

The expected values of Equations (2.S1) can be written as follows:

t

E [v(t)] -- _E(n(z)) dT = 0

t T

E [x(t)] = _" _E(n(p)) clpdT = 0

(z.3z)
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Consider now

E [v(tl)v(tz) ]

tI t 2

= _'S j_Cp).C_) dpdT

0 0

I£ it is assumed that t 2 > t I then F_uati_ (2.33) can be ex-

pressed as

_.[v(ti)v(tz)]

t1

Ze _o + d_

0

(z.33)

(2.34)

Now, carrying out the integration in F_uation {2.34) leads to the £ollowing

expression

E [v(tl)V(tz) ] °2 [ e-Bt2 -BtI
B(t1+t2)+ 2]+ e 2_(t l,t2) - (2°35)

The variance o£ v(t) is

e-Bt 12°2 +Bt- 1

_" [v(t)2] = _T

(z.36)

In a similar manner, the £ollowing expressions can be obtained

E [v(t).(t)] - g'- - e'Bt
(z._7)

E [xCt)vCt) ]

E [x(t)x(t) ]

2 _ 1 _( -Bt]
= o -13t+ _t) 2 -e

-- BT +

(z.3s)

(z.39)



the standard deviations of

pectively by

v(t) and x(t)

.I

av = (E [v(t)2]) _[

1

o x = (E [x(t)2])"

are now defined res-

(2.40)

18

Figures 2 and 3 show the velocity and displacement histories which

result as a consequence of the O. U. acceleration process shown in

Figure I. The standard deviations are shown also in the figures. It

should be noted that while the mean values of v(t) and x(t), given

in Equaticm (2.32), are zero for all time, the standard deviations

increase without bound.

Sumary

The motivation, for this chapter lies in the justification for

selecting the O. U. process as the noise process to be dealt with in

the following chapters. The process is seen to satisfy the intuitive

criteria designated for random disturbing phenomena, and appears to

have a reasonable effect on a simple physical system. It should be

noted that by adjusting the parameter 8 in Equation (2.4) one can

simulate near-white noise (in the case of large . S) and noise which

is constant in time (small 8 ). ]his flexibility increases the

desirability of the O. U. process model.
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Figure 2. Velocity Time History Resulting from an O.U. Process Acceleration
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Figure 3. Displacement Time History Resulting from an O.U. Process Acceleration



_R 3

Tr_ EFFECTS OF NOISE ON AN OPTIMAL I_NISTIC TRAJECIDRY

Theoretical Development

The next stop in the study of optimal stochastic control is to

look at the effects of a perturbing noise such as the O. U. process

on a multidimensiomal nonlinear dynamic system. Consider the solution

of an optimal deterministic control problem which can be written in

the fore

x i = fi(x , u , t) (3.13

where the * designates the optimal deterministic trajectory. Suppose

that the controls u. (t) are perturbed by an additive multidimensional
z

version of the O. U. process developed in Chapter 2, i.e., the actual

control input to the system is:

ui(t ) -- ui (t) + hi(t) (3.2)

where

E [ni] = 0 (3.3)

Z e-Sjkltz-tl I
E [nj(t I) nk(t2)] = Ojk

(j, k not stained)

2

The coefficient Ojk , j = l,...j m, k = I, ..., m is a co-

variance component of the n_Itidimensional hi(t) process, and 8jk
is

20



2

the time correlation coefficient associated with the Ojk component

of the covarimlce. It is as._med that the multidimensional noise is

not cross-correlated, i.e., o.. = 0 :for i # j.
!J

The state, resulting from the noisy control ui(t) , obeys the

differential equatic_

21

xi --" fi (x' u, t) (3.4)

An ensemble of stochastic trajectories is implied by Equation (3.4).

Consider tim Taylor series expansion of one of these trajectories about

the optimal deterministic trajectory described by Equation (3.1).

. * * _Ii- . *

-xj uj-j u_i = ri (x ' u , t) + _--_-(xj

I a2fi * *

+ 2"_-_x k (xj-xj)(Xk-X k ) +

2 *

_fi * *

_xj_uk (xj-xj) (Uk-U k )

2 *

1 afi . * *

@u-_uk(Uj-U j )(Uk-U k ) +
(3.s)

Now introduce the notation

xj-xj = 6xj

= fix @u. - fiu
BX. •_ •

j J J J
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C3.63

rewriting Equation (3.5) and subtracting out Equation (3.1), the follow-

ing l_sult is obtained

* ½ * •
fixj_ ,sxjC,,,.}-_) ÷ fiuj_ Cuj-uj }C_-u k ) ÷ ... C3.73

Substitution of equations (3.2) into Equations (3.7) leads to

_i = f_j % ÷f% _j÷½ f_xjxk _xj6xk +

f_uk _j"k ÷½fiuj%"pk ÷ • • • C3.8)

Making use of linear system theory (see Ref. 11), a solution to

Equation (3.8) may be written in the fore

6xi(t ) = _ij(t,t0) 6xi(t 0) ÷ _o_ij(t, T) Uk(T} nk(T)

÷

(3.9)

where 6xi(t0) is the initial state deviation, and the coefficient

_ij (t't0) is an element of the so-called state transition matrix.

satisfies the conditions that

_ij



&ij (t'to) -- fixk(t) _kj (t'to)

- i, i-j

_ij't0"t0_-r_ = 6iJ = 0, i # j
(3.10)

25

by resubstituting _tion (3.9) in £or 6x k and 6x_ in Equation

(3.9) the following expression is obtained.

t

6xi(t) - _ij(t,to) 6_(to) + fto#ij(t,T) { fJUknk +

T

t O

_m CT'to) 6XnCto) + _ (T,§) nn d§ +
.

(3..11)

T

I fto ]6}1
fJXkUg #km(,,t O) 6Xm(t O) + ,kp(,,o) fPUmn m dp n_ + _fJUkU n.kn d,

As stated in the introduction, the analysis will be carried out Under

the assumption that the variance in the perturbing noise is small.

Since ni(t ) is assumed to be Gaussian, and E [ni(t)] ffi O, it

follows that

2j -1

E [ni(t ) ] -- 0 j = I, 2, ....

w

[ni(t) 2J JE ] = 1.3 .... (2j-1) [ECniCt) 2 ) ] (3.12)

The first condition implies that, for a normal distribution, all

odd moments about the mean vanish, _hile the second condition implies



that all even moments about the mean can be expressed in terms of

positive powers of the variance. Hence, in the following discussions,

all mce_nts of hi(t) higher than the Znd are assumed small enough

to be neglected.

By taking the expected value of F_tuatian (3,11) and:by requiring

that the perturbing no£se is u_correlated w£th any uncertainties

in the in£tial state, i.e.,

24

E [_xi(to) nj(t)I = 0 (3.13)

the following expression is obtained.

6_£(t) = #ij(t,t O) 6xj(t O) +

t {_ij (t'T) fJXkX _ Mk_(_

t o

,e)+ fjxkuhk Ce,e)

3

1 )I de_fJUku_Rk_ (e 'e I
.#

(3.14)

where

t

hijCt,t) = E [6xi(t) nj(t)] = f#ikCt,e)fknmCe)_j(t,e) de

and

to

(3.15)

Mij (t,t) = E [6xi(t) 6xj(t)]

t

/
to

= #ik(t,to) #j_(t,t O) E [6Xk(to}6X_(t O) ] +

t

t o

(3.16)



It should be noted that Equation (3.14) is a very important result.

It can be seen that if Rij(P,T) _ 0 , or if Mij(to,to) _ O, then,

in general 6xi(t) --0 , This is true only for nonlinear dynamic

systems where the second partial derivatives of fi do not vanish.

In the case of a linear dynamic system, 6_i(t ) will vanish unless

6_i (t0) is nonze_.

In order to solve the set of Equatiom¢ (3.14), (5.15), and (5.16),

by conventional numerical integration methods, the equations will be

converted back to differentia) fore.

rule, i.e.,

h(t)

H_ fCt,T)dT - f(t,h(t))_- - fCt,g(t))

g(t)

By making use of the Leibnitz

,. h(t)
+ | _(t,t) dt C5.17)

Jg( dtt)

25

Equation C3.14) can be differentiated to obtain

6xi= +ij(t'to ) 6xj(to) + 'ij (t't) [+ fj_x_ _£(t,t) +

fJXkU . hkt(t't)+½fiuku ' Rk.(t't)] + f'ij(t.'t) +fjxtxkM_('r,t)

1:0

+ fjx.ukhk. (,,,)+ ½f_:_uk _(,,,)] d, (3.z8)



By substituting f_uation (3.10)

expression can be written

into Bquation (3.18) the following

[6x-i(t ) = fix k _kj(t,to) 6_(t O)
÷

t_kj (t,T) 1 ½ fjx_xm Mm +

to

26

fjx,u mhm+½fju,u mRm } dT ] + ½_iXjXk_k(t,t) +

f_j_khJkc_'_÷½f_uj_RjkC_,_ (3.19)

and by substituting Equation (3.14) into Equation (3.19), the follow-

ing differential equation for 6_i(t ) is obtained.

(3,20)

From fA_ation (3.20) it is seen that, under the small noise restriction,

6xi(t) obeys a forced linear differential equation in which the forcing

functions involve the covariance components of the state and noise.

In a similar manner, FAuation (3.16)can be differentiated to obtain



_ij(t,t) = &ik(t,t0) ljp(t,t 0) Nk_(to,t O) ÷

27

_ik(t,t 0) &jg(t,t 0) Mk_(t0,t 0) +

t

+ik(t,t) floam(t) " +ji(t,)) fl_un l_(t,§) d§ +

0

t

f oik(t'P) film (p) _n (O't) dp 0j_(t,t) f_un(t ) +

to m

ik(t,o) %(o) _j_(t,§) from(s) _m(p,s) d§do

t

t o t o

(3.Zl)

Bluati_ (3.21) reduces to

"kj+ h,k (3.ZZ)

By differentiating the expression given in Fx_ation (3.15) the following

result is obtained

_ij (t,t) lik(t,t) fkUm(t) _j(t,t)

t ot

f Oik(t,T) Ykum(_) _j(t,T) dT

t o

t

+ f 0ik(t,T) ffblm(T) _j(t,T) dT +

(3.23)



2 -_i:(t-x)
e J

By ._a.ca-ll_ng Equation (5.43, i.e., Rij(t,¢ 3 = oij

the derZvative of Rij (t,o) can be computed as follows

28

• 2 e'Bij (t-T3
RijCt,Q = -aij oij i, j not summed (3.243

since oij " 0 , if i _ j,

gijCt,T3= -_ikP"kjCt,T)= -g_Bkj (3.zs3

Hence, after substituting Equation (5.25) into the expression given in

Equation (3.23), the differential equation for hij (t,t) can be written

as follows,

/'ij" r=khkj÷ riuk_j -hik %j (3.z63

The set of Equati_m (3:193, (3.213, and (3.263 fttlly describes the

bekavior of the expected value or "man" deviation from the optimal

deteministic trajectory which obeys Equation (3.1). Equations (3.203,

(3022) ,and (3.26), can be directly integrated in terms of specified

initial conditions

6_icto3= o

Mij (t0,t03 = Mij 0

hij(t 0,t0) = 0 (3.273



Application To A Space Guidance Problem

The results derived in the previous section will now be applied

to the example space guidance problem discussed in the introduction.

Consider a point-mass spacecraft undergoing a minimum time transfer

from Earth to Mars under the influence of the gravitatimml field of

the Sun and a continuously operating low-thrust ion engine. The

geometry of such a system is illustrated in Figure 4.

of the transfer trajectory, in polar coordinates are

29

The state equations

v2 u +

7

-- UV + a cosa
r

v
r (3.z8)

where:

a
T

_-_(t-t o)

r is the Sun-spacecraft distance

is the angle made with the Sun-spacecraft

line with the Sun-Earth line at launch

u is the velocity component along the Sun-

spacecraft line

v is the velocity component perpendicular to

the Sun-spacecraft line
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is the solar gravitational constant

T is the thrusting force magnitude

m0 is the initial spacecraft mass

is the mass flow rate and

a is the engine thrust direction angle,

measured from a perpendicular to the Sun-

spacecraft line.

The thrusting force of the engine, T, is held to a specified

constant, and the control which is used to bring the terminal system

state to coincide with that o£ Mars is a , the thrust direction angle.

A calculus of variations approach is used to find the deterministic

thrust direction program a(t), which completes the transfer in mini-

man time. The solution to the variational problem is presented in

Appendix A. The solution to this optimization problem is used as the

optimal deterministic trajectory, about which the mean values of 6u,

6v,

and

6r, 68, and their respective standard deviations, ou , ov , or ,

Oe ' are computed.

The purpose of examining the characteristics of the mean deviations

31

is to determine whether or not a stochastic control will help appreciably

to satisfy the terminal conditions of the transfer° An analysis of the

standard deviations will give some indication of the dispersion of the

possible occurring stochastic trajectories.

Matrix formulations of 5quations (3.20), (3.22), and (3.26),

applied to the Earth-Mars transfer, appear in Appendix B° These

equations have been numerically integrated forward in time for several

combinations of values of the following parameters.



a. Oa_

b, o p
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1
d. T _-

ct B '
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e. o 0

the standard deviation.of noise occurring in the thnist/

mass magnitude

the standard deviation of noise occurring in the thrust

orientation angle

the correlatim time o£ the noise occurring

in the thrust/mass magnitude

the ¢nrrelation time of the noise occurring in the

thrust orientation angle

the standard deviation of the error in an initial state

component. It should be noted that errors in the

individual components of the initial state are assumed

OuO = OvO =equal and are not cross-correlated, i.e.,

or0 = ae0 ffio0 •

The results are shown in Figures 5 through 18. The figures

labeled a show. the time histories of the mean deviations from the optimal

deterministic trajectory, 6g, 6_, 6_, and 6g° The figures labeled b

show the time histories o£ the standard deviations, i.e.,

°u-- " = _
or (M55

°v ffi(M22 - 6v-_)_ °0 ffi0v144 - 6B--2)_ (5.29)

The means, 6_, 8_, 8_, 6B, and standard deviations, °U' °v' °r' °0'.

are computed and shown on the plots in the following system o£ units,

unit of distance

unit of velocity

unit of mass =

= radius of Earth's orbit (1AU}

= velocity of Parth (1 VE)

initial spacecraft mass (I mO)



1he remaining constants used in the computation are listed in Appendix C.

Although the plots of the time histories of the means and standard

deviations are presented in the above units, i.e., 1AU for position

components, and 1VE for velocity components, the time scale is pre-

sented in days. The parameters of interest in the £ollowing respective

plots are:

33

In Figures 5 through 7,

In Figures 8 through 10,

oa ranges from .02T to .0ST

a = 0

Ta = 1 Day

o 0 =_ 0

T a ranges from i0 days to 1000 days.

o a = .02T

o = 0

o 0 = 0

In Figures 11 through 13, a a ranges from 1 ° to 3 °

o = 0
a

- l_y

o 0 .= 0

In Figures 14 through 16, Ta ranges from 10 days to 1000 days

o a = 0

o = 1 °

ao= 0
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In Figures 17 and 18, o0 ranges from 1 x 10 -5

oa = .02T

Ta --
o = 0

to 2 x 10 -5

$3

The plots in Figures S through 18 illustrate several important

facts regarding the effects o£ noise on nonlinear deterministic optimal

trajectories; The primary trends shown in the figures are summarized

as follows,

1. The occurrence of noise in the equations of motion always im-

plies that the mean trajectory will differ from the deter-

ministic trajectory. This is a consequence of the non-

linearit T of the equations of motion. The plots demonstrate

that 6u, 6_, 6_, and 6e, are in general non-zero if noise

occurs in either the thrust/mass mgnitade or its direction.

2. The mean deviations 6u, 6_, 6_, and 6e-, are all seen to

increase as the perturbing noise standard deviation increases.

See Figures 5a through 7a and Figures lla through 13a. A

tentative conclusion is that the larger the perturbing noise is,

the larger the average deviation from the deterministic tra-

jectory will be.

3. The mean deviations are also seen to increase with increasing

correlation time. See Figures 8a through lOa and Figures 14a

through 16a.

4. The standard deviations of the state, o u, Or, Or, and ae,

all increase with both increasing noise standard deviation

and increasing noise correlation time. See Figures 5b

through 16b.

J



S. Both the means and standard deviations of the state grow

larger with increasing initial state uncertainties. See

Figures 17 and 18.

6. The effect of the nonlinearity of the system is shown on

the standard deviation plots, Figures 5b through 18b,

especially for the case of noise occurring in the thrust

orientation angle. Unlike the standard deviation histories

in Figures 2 and 3, which show a monotonic increase of the

standard deviations with time, the values of Ou, Or, Or,

and ae are seen to show oscillatory tendencies. See

especially Figures llb through 16b.

7. The effect of the optimality of the deterministic tra-

jectory is shown on the standard deviation plots especially

in the case of large noise correlation times. For instance

in Figure 10b, ou is seen to decrease after the rapid

thrust direction change in the optimal deterministic

trajectory. See Figure A. 2.
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Sim-lation of Stochastic Trajectories

In order that the effects of noise in the contrels of a space-

craft on an Earth-Mars trajectory can be examined further, several

sample trajectories are 'integrated .using values for the perturbing

noise generated from a random number generator. In particular, the

sample trajectories are generated with noise occurring in the thrust/

mass magnitude.

The equations which are integrated forward are the perturbed

versions of Equations (5.28).



2
__V U

r _ + fa+na) sina
r

= .UVr+ (a+na) cos_
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= U

V
r

(3.30)

where n a is the sample of noise occurring in the thrust/mass

magnitude. The values for n a are generated recursively for the

numerical integration by the formula

na(ti+l) =Xi+lO/1-e -28a(ti+l'ti) + na(ti)e -Ba(ti+l-ti) (3.31)

where the x i are generated from a normal random number generator.

The components o£ the deterministic state, £ound by integrating

Equations (3.28), are subtracted from the components o£ the sample

trajectory state computed from the integration of Equations (5.30).

The resulting components o£ the sample state deviation for one of the

s_ulated trajectories are presented in Figure 19a. The correspond-

ing sample perturbing noise, generated with the relation given in

Equation (3.31), is plotted in Figure 19b.

The noise parameters for the sample trajectory in Figure 19

are listed here.

o a = .OST o a = 0 o 0 = 0

Ta = 1 day
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Ten smuple trajectories, with these same noise parameters have

been used to generate sample means and standard deviations of the state,

which can be compared to the theoretical means and standard deviations

appearing in Figures 7a and 7b respectively.

The sample means are computed from the £ollowing formulas

N
E 8u.
1 1

8u --
N

N

E 6vi
1

6V -

N

r 8ri
i

_r -
N

r 6e i
1

_e = T (3.32)

58

with N = I0.

formulas

The sample standard deviations are computed from the

(6ui-6u-'_2

°u ;L .....N-I

(Svi-6v-)21%°v =L N-I

FN 27%

|
°r;L N-1 j

N _%
°e = N..I ' J

(3.33)



The time histories of the sample means and standard deviations

of the state are shown in Figures 20a and 20b respectively. The

sample mean and standard deviation of the noise na are computed

with the formulas

N

Z nal
1

na N

i(nal-.-a)

°a = N-I (3.34)
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The time histories of n-a and o a appear in Figures 20c and 20d,

respectively. Since the sample mean and standard deviation of the

noise na show a large dispersion about the theoretica/ values of

na and o a, respectively, it can be concluded that many more tra-

jectories would have to be included in the averaging in order to find

close agreement between the sample means and standard deviations of

the state, and their theoretical counterparts. However, the time

histories of the sample standard deviations in Figure 20b are seen to

resemble the theoretical standard deviation time histories for the

same noise parameters, shown in Figure 7b.

summry

The main reason for examining the effects of perturbing noise on

an optimal deteministic trajectory is to determine if there is

sufficient reason for developing a stochastic control, or, in other

words, if there is sufficient reason for developing a control which
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compensates for the expected effects of the perturbing noise. The

theoretical results demco_strate that for the case of a nonlinear

system the mean trajectory will always differ from the deterministic

trajectory. Hence a stochastic control, as defined in the intro-

duction, will bring the final state closer to the teminal conditions

in an average sense. It should also be noted that in the case of

the Earth=Mars transfer, the standard deviations are large compared

with the mean deviations. This is true of all dynamic systems

which are not too highly nonlinear. In such systems a method for

updating the control program during the controlling interval is

necessary in order to achieve a high degree of satisfaction of the

terminal canstraints.
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OIA_4

THE ST(_IC _ OF VARIATIONS

APPLIED TO OPTIMAL 5"ll_IC CfINTIK)L

Theoretical Development

The results of (]mpter 5 indicate two important facts about the

effect of small perturbing noise on an optimal deterministic trajectory.

First, the mean of the ensemble of possible random trajectories differs

from the deterministic trajectory, and second, the standard deviation

of the state ensemble, in general, increases throughout the controll-

ing interval t O __ t __ tf. Both of these characteristics indicate an

inadequacy of an optimal detenainistic control for randomly perturbed

dynamic systems. The first of the difficulties can be overcome by the

determination of a control program which compensates for the expected

effects of the perturbing noise on the system state. Such a control

will be called optimal stochastic control. This chapter is devoted

to the derivation of an optimal stochastic control procedure. The

procedure is determined by utilizing a stochastic calculus of variations

method which is analogous to the methods used in the deterministic calculus

of variations.

In the theory of optimal deterministic control, (see Appendix A),

the following set of differential equatim_s is considered

A set of controls

xi = fi (x'u't) i = l, ..., n (4.1)

ui(t), i = i, ... m, is sought such that

tf

I[u] = / fn+l (x,u,t) dt

63

(4.z)



is an extremum, subject to constraints at the initial and final times

of the form

64

xi(to) = xi0 (4.3)

xi(t£) = xif

For the optimal stochastic control problem, the following set

of stochastic differential equations is considered

xi = fi (x'u'n't) i = i, ... n (4.4)

where, in the present study, hi(t), i = I, ..., m, is additive noise

perturbing the cmltrols ui(t ) . The initial conditions for the xi's

are specified. That is,

E[x i(tO)] = Xio (4.S)

The functional to be extremized and the constraints at the final

time cannot be formulated in a deterministic manner because of the

presence of the noise in the differential equations. Hence, a set of

nonrandom controls

is an extremm,

ui(t) is sought such that

tf

I[u] = E/fn+i(x

_0

,u,t)dt (4.6)

satisfied at the specified initial time

subject to the constraint that 5quation (4.5) be

to, and that at the



unspecified teminal time tf
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E[xiCtf)] = xif C4.7)

Also, the differential equations (4.1) must be satisfied at all points

of time along the trajectory. The constraints given in Equation

(4°5) and (4.7) are adjoined to the functional by means of unknown

sets of constants _i and vi respectively, and the equations of

motion are adjoined to the functional by means of a set of stochastic

Lagrange multipliers Pi(n,t). The constrained extremal value of

I [u] can be found by extremizing

J[u] - vi[E(xi(tf) - xif)] + ui[E(xi(t0) - xi0) ] +

E fn÷l(X,U,t)dt ÷ E Pi(Xi - fi(x,u,n,t)) at

t o

Since vi' Pi' xif' and xi0 , are deterministic quantities, the

functional expressed in Equation (4.8) can be written as follows

J[u]

(4.8)

E _i(xi(tf)-xif) + _i(xi(t0)-xi0 ) ÷ fn÷l+Pi(Xi-fi )

The expectation is taken over the adjoined differential equations of

constraint, (4.1),so that the control can be found in terms of deter-

ministic quantities, i.e., expectations over functions of the noise,

instead of in terms of functions of the noise itself. The method of

adjoining the differential equations of motion to the functional

I [u] with a stochastic Lagrange multiplier which depends on the noise

(4.9)



hi(t) has been suggested by Lass (Ref. 2), and has been discussed by

Kushner (Refo 1, 2).

A generalized stochastic Hamiltcnian can be defined by

66

H(x,p,u,n,t) = Pifi - fn+l (4.10)

In view of hluation (4.10), the functional given in Equation (4.9)

can be written as follows

J[u] = E[vi(xi(tf) - xif ) + ,i(xi(t0)

tf

-xi0)+ f(Pi£i'H) dt]

t o (4.11)

!

Now assume that the set of controls that extremizes J[u] is u. (t).
J

! !

Assume the correct values o£ vi' Pi' and t£, are vi ' "i ' and
l

tf . Let a resulting trajectory, for a realizable sample of the ni(t )
! !

process, be xi (t) with resulting Lagrange multipliers Pi (t).

Then c__sider neighboring trajectories of the form (see Appendix A.)

! !

xi = xi + ¢6xi "i = "i + ¢6_i

! I

ui = ui + E6ui _i : vi + _6vi

! !

Pi = Pi ÷ E6Pi tf = tf + c6tf (4.12)

where the 6xi's. 6ui's. 6Pi'S , 6vi's. 6,i's , and 6if are arbitrary

independent quantities, which in particular are independent of the noise

hi(t). The constant e is an independent parameter, which is also



noise independent. Note that the functional J[u] is a function of

!

The condition necessary for optimality o£ the control ui (t) can be

stated as follows

67

Eo

dj II = 6J = 0
_I[ 1E=0

(4.13)

By making use o£ the commutative property o£ the derivative and the

expected value operator, as shown in (_apter 2, 6J can be expressed

as follows

v dxi(tf) dvi
6J - E i dE _ (xi(tf) - xif) + "i dxiCt0)+ dE +

d_i dtf

(xiCt 0) -Xio) . CPixi-H) J --_[ +
tf

t£

(4.i4)

Equation (4.14) reduces, in a manner like that of the deterministic

problem in Appendix A, to the following expression

6J = E[(vi+Pi(tf) )(6_i(t£)+xi(tf)6t £)

+ ("i'Pi (to)) 6xi (to)

t£

- H(t£_6t£ + 6_i(xi(t£)-xi£)

+ 8_i(xi(t0)-xi0) - ,!

(Pi÷Hxi)6Xi + _pi-Xi)6Pi

to

* nuj_Uj dt1
(4.15)
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Since the arbitrary functions 6xi, 6ui, 6pi. 6_i, 6vi, and 6tf are

independent of the noise hi(t). 6J can be written in the following manner

6J : E(vi+Pi(tf11(6xi(tf)+xi(tf)6t f) - E[H(tfl] 6tf

+ 6_i E[xi(tfl-xif] + E(ui-Pi(t0))6xi(t0) + 8,i E[xi(t 0) -xi0]

t£

- f_.[_i+Hxi]6xi+F.[Hpi-_i]6Pi + _.[Hui] 6ui dt

to

(4.161

By the fumdamental Lemma of the calculus of variations, the arbitrary

nature of the terms 6xi, 6ui, 6pi , 6_i, 6vi, and 6tf, imply that their

coefficients vanish identically. Thus the conditions necessary for the

! ! ! ! ! !

set xi' ui ' Pi ' i ' i ' tf to be an extremal solution are

E[xi " H i] = 0 (4.17)

Eli)i + Hxi ] = 0 (4.181

E[Hui ] = 0 (4.19/

at all points of time in the controlling interval toit<_t£,

E[xi(t0)-xi0 = 0 (4.20)

E[Pi(t0-Pi] - 0 (4.211

at the initial time to, and

E[xi(t£)'xi£]
= 0 (4.221



E[Pi(tf)+vi] = 0 (4.25)

E[II(tf)] = 0 (4.24)
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at the terminal time tf.

The Equations (4.17), (4.18), and (4.19), with end conditions given

in Equations (4.20), (4.21), (4.22), (4.23), and (4.24), theoretically

yield an optimal control which takes in to account the expected effects

of the perturbing noise on the state and Lagrange multipliers. It should be

noted that although the control procedure derived from the solution of

Equations (4.17), (4.18), and (4.19) is referred to as an optimal stochastic

control, the control procedure is a nonrandom function of time, based on an

a priori knowledge of the statistical behavior of the noise in the controls

of the dynamic system.

In general the preceding equations are very difficult to evaluate,

since the probability density functions necessary for the computation of the

expected values are not readily available. P_ca11 that in Chapter 3, an

approximate differential equation, which describes the motion of the mean

of a stochastic ensemble of trajectories, was developed in terms of the

mean deviation from a deterministic trajectory. The dif£erential equation

for the moan deviation was developed by expanding the differential equation

governing the stochastic trajectory about the differential equation govern-

ing the deterministic trajectory. Expected values were taken over the term

of the expansion in order to yield a differential equation for the mean

deviation. The equation for the mean deviation was found to be driven

by covariance components of the state deviation and the perturbing noise.
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A similar procedure will be employed here in order to evaluate

the necessary conditions of the optimal stochastic control problem.

The conditions necessary for stochastic optimality, Bquations (4.17)

through (4.24), will be expanded about the solutions to the determinis-

tic optimal control problem, derived in Appendix A. The resulting

necessary conditions will be differentia/ equations for the mean

deviations of the state and the Lagrange multipliers. The differential

equations will be driven b7 covarinace components of state, noise, and

Lagrange multipliers, and by 6u i, the difference between the optimal

stochastic control and the optimal deterministic control.

The deterministic necessary conditions, derived in Appendix A,

will be stated here for the reader's convm_ience. The conditions are

xi - _ = 0
i

Pi + Hxi = 0

= 0

at all points of time in the controlling interval

xi (tO) = Xio

t O _ t _ t£,

(4.25)

(4.26)

(4.27)

(4.28)



Pi (to) = _i (4.29)

71

at the specified initial time to, and

xi*(tf) = xi£

Pi (tf) = -vi

H (tf) - 0

at the unspecified terminal time tf.

(4.30)

(4.31)

(4.32)

Consider first a Taylor expansion of the terms in Equation (4.17)

about the deterministic solution given in Equation (4.25). The

expansion can be written as follows

E[6xi+x i - fi(x ,u ,t) - fixj6Xj - fiuj(6uj+nj) -

1

1

fiUjUk(6Ui+nj)(6uk+nk).. ] = 0
(4.33)

In view of Equation (4.2S), tim following expression can be

obtained.

E[6x i - f%6xj - fiuj(6uj+nj) ½ fixjxk6xj6xk -

fixjuk6xj(6uk+nk ) - ½ f.,uj uk(6u_+ni)(6uk+nk)]J_ = 0

(4.34)



By making use of the convnutative property of the derivative and the

expectation operator, the Equation (4.34) reduces to
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(4.35)

where, following the definition used in Chapter 3, _j is defined

as follows

Mij = E[6xi6x j] (4.36)

It should be noted that for a given control deviation 6ui(t ) and a

given sample of the ni(t ) process, the actual state deviation will

obey the differential equation

fixjx k 6xj(6Uk+nk) + ½ fiuju k (6uj+nj)(6uk+nk)
(4.37)

By differentiating Equation C4.36), it is seen that _j obeys

a differential equation of the form

Mij = F-[6xi6x j] + F-[6xidx j] (4.38)

By substituting Equation (4.37) into Equation (4.38), and

neglecting terms of higher order than the second, the following expression
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can be derived

(6xi6Uk+hik)0 uk (4.39)

where hij is defined as follows

hij - E[6xin j]
(4.40)

From differentiating equation (4.40) with respect to tim,

it is seen that hij obeys the differential Equation (3.26), i.e.,

fiij = fixkhkJ ÷ fiu_Rkj - hikSkj
(4.41)

Lrow consider the expansion of Equation (4.18) about the necessary

condition of the deterministic problem, given in Equation (4.26).

qlze expansion can be written as follows

if'". Hxi j÷Hxiuj
., -:. *,-! + 6x ((Su +n )'-, .... ":. x. j j

1 3

÷

HxiPj6pj+ _xixjxk6xj6x k + r'xiUjukl_(_u'+"')C_uk+"k)3J +

_liX .S'O.6D,_+ 6xj(6_(+n k) +
iPjPk "., "K Hxixju k

HxixjPk_xj6Pk + HxiupPk(6Uj+nj) 6pk ] = 0
(4,42)
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Since H is linear in Pi' the terms which contain second derivatives

of H with respect to Pi vanish. Subtracting the deterministic

necessary ccmdition, given in Equation (4.26), from 5quation (4.42)

leads to the following expression

% "

1 M _I
_Hxixjx k jk ][ Hxiujuk(SujSuk+gk) -

HxixjPkNjk " Hxiujp k (6uj 6_+fkj)
(4.43)

lN_.ere

Nij = H[Sxi6Pj] (4.44)

and

fij = E[SPinj] (4.45)

It should be noted that for a given control 6ui(t ) and a

given sample of the noise process hi(t) , the actual stochastic

Lagrange multipliers, 8Pi(t), satisfy the differential equation
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-- -_ixj _xj-Hxpj (+uj+.j)-_iPj_pj -

_xixjx k6xj6x k - _xi.ju k(6uj+nj) (6Uk+nk)

_ixjuk+_ (+Uk+"k) - _ixjl_+_j+t_ "

HxiujPk(6Uj+nj) 6Pk
(4.46)

Differential equations for Nij and fij can be derived

in a manner similar to the manner in which Equations (4.39) and (4.41)

_re derived. The resulting expressions are

Nij " fixkNkj'Nikfkxj + fiuk(+uk+pj+fjk) -

MikHXkXj - (+_i+Uk+hik) Hxjuk (4.47)

and+

_ij = " Hxixk_ j " Hxiuk_j" HxiPkfkJ-fikBkj (4.48)

Finally, consider the expansion of the stochastic optimality

+

condition given in Equation (4.19) about the optimality condition of

the deterministic control problem, given in Equation (4.27). The

expansion can be written as follows



E[Hu i +Hixj 6xj +Huiuj (6uj +nj ) +HuiPj 6P j

1 . f6u.+n._) (6uk+nk)
tiuiuju k" 3 J

1

z Huipjh6Pj  

+ ½ Haixjxk6Xj6Xk

+ Huixjuk6Xj (6uk÷nk) +

÷

Huixjpk6xj6p k + HuiujpkC6uj+nj)6Pk] -- 0 (4.49)

Since H is linear in Pi' and the deteministic quantity Hu.
1

satisfies Equation (4.27), Equation (4.49) reduces to the £ollc_4_ng

expression
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Huix j 6_+Huiu j6uj+HuiPj6P 3 +

1

_[Huiujuk(6uj6Uk+Rjk) + } Huixjx k Hjk +

H- .ju (a-j uk÷hj9+"u .jhsjk÷

Huiujpk(6uj6_÷fkj ) = 0 (4.50)

The set of Equations (4.3S), (4.39), (4.41), (4.43), (4.47), (4.48),

and (4.50), describes the behavior o£ the first and second order moments

of the dewi_ations of the state and [agrange multipliers from their

respective deterministic values. The constraints which mast be

satisfied at the initial and final times can be derived by expanding

the stochastic conditions at the end points, i.e., Equations (4.20),

(4.21), (4.22), (4.23), and (4.24), about their deterministic analogues,



Equations (4.28), (4.29), (4.30), (4.31), and (4.32), respectively.

I£ the stochastic constraint given in Equation (4.20) is

expanded about the deterministic cQr_straint given in Equation (4.28),

the following condition is obtained
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6xi(to) = 0 (4.51)

The expansion of the cmstmint given in F_quation (4.21) about the

constraint given in _luation (4.29) leads to the condition

6Pi(t 0) = -6_i (4.52)

The stochastic condition given in Equation (4.22) can be expanded about

the deterministic cmdition given in Equation (4.30) in the £ollo_ring

manner

E[xi (if)+ 6xi(tf) - xif] = 0 (4.53)

_t #k ft #t _t

The term xi (t£) can be approximated by xi (tf) + xi (tf-tf).

By substituting this approximation into Equation (4.53), and sub-

tracting out the deterministic terms, the following constraint can

be derived

x i (t_)6Tf + 6_ i -- 0 (4.54)

The expansion of Equation (4.23) about the deterministic condition

given in Equation (4.31) leads to the condition



6PiCtf) -- 6v i (4.55)
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Finally, the condition given in F_Imtion (4.24) can be

expanded about the deteministic solution given in Equation (4.52),

in the following manner

H[H'(tf) + Hxi6X i(tf) + } Hxixj _xi6x j +

HPi6Pi(t f) + ½ HpiPj6Pi6P j + Hui(6ui*. i) +

i

Huiu j (6ui+ni) (6uj+nj) + Hxiuj6Xi(6uj+n j)
÷

HiPj6xi6P j + HPiUj 6p i(6uj+nj) ] -- 0

H (if) can be approximated by H (tf) + H (tf-tf),

(4.56) reduces to the £ollowing expression

(4.56)

and Hquation

1

Hpi_gi(tf)+ Hu'_Ui(t£)+3 Z Huiuj (_uiftf)6uj(tf)+Rjk(t£))
÷

Hxiu j (6_i(tf)6uj(tf) + hij(t£)) + HXiPjNij(t f) +

HPiUjfij (t£) = 0 (4.57)

In theory, the stochastic optimality condition given in Equation

(4°50) can be solved for 6uj (t), and the solution can be substituted

into the remaining differential equations in order to eliminate the
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control from the m_alysis. The differentia/ equations, i.e.,

Equations (4.35), (4.39), (4.41),(4.43), (4.47), m'Id (4.48),

then form 2[n+n2+mn] equations involving 6x--i,6p--i,Hij , Nij ,

hij, and fij" These equations must satisfy the 2n+l terminal

constraints given by Equations (4.54), (4.55), and (4.57), at the

final time t£, and must also satisf7 the 2n conditions given

by Equations (4.51) and (4.52) at the initial time tO. In

addition the equations must satisfy the £ollowing specified initial

conditions at t o

Mij(to,t0) = Sij0

Nij(to, to) = 0

hij(tO, to) = 0

fij(t0, to) = 0 (4.58)

The set of differentia/ equations and the end conditions form

a two point botmdary value problem with split end conditions, which

can be solved by a number of existing numerical methods for the re-

maining unspecified end conditions 6vi, 6vi, and 6_f. (See P_f. 12)

"filesolution to the boundary value problem will theoretically yield

the optimal time histories of 6_i(t) and 6_i(t), from which the

optinml stochastic control deviation 6uj (t) can be found. The

approximate solutions to the original stochastic necessary conditions

can be stated theoretically as follmes



E[xi(t)] -- x i (t) + 6xi(t)

F'[Pi(t)] - Pi (t) + 6_i(t)

uj(t) = uj (t)+ auj(t) (4.s9)

Application To The Space Guidance Problem

?he results derived in the previous sections of this chapter

will now be applied to the low-thrust F_rth-Mars transfer problem

studied in Chapter 3. It is seen from the curves at the end of

Chapter 5 that the standard deviations of the state associated

with a stochastic ensemble of randomly perturbed trajectories are in

general much larger than the respective mean deviations from the

deterministic trajectory. This is indicative of a dynamic system which

is not too highly nonlinear. In such systems, the optimal stochastic

control correction 6ui(t ), which corrects the deterministic control

in such a manner to take into account the expected effects of the

noise on the state, is expected to have a smaller effect on the

system than the noise itself. This leads to the assumption that the

control deviation derived previously in this chapter, is much smaller

than the standard deviation of the perturbing noise, i.e.,

8O

6ui(t) < < Oil i not summed (4.60)

?he assumption given in Equation C4.60) will be incorporated into the

differential equations, when applied to the interplanetary transfer

problem, by neglecting all second order terms containing 6uiCt ),



that is, by neglecting all terms containing the products 6ui6u j ,

6ui6_j, and _ui6_jo

It should also be noted that the equations of motion of the

interplanetary transfer, i.e., Equations (3.Z8), fall into a class

of differential equations which can be separated into the follow-

ing form
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! I!

xi = fi (x,t) + fi (u,t) (4.61)

It also should be noted that the functional to be extremized,

I[u], which can be written as follows

tf

F
I[u] = Ell dt (4.62)

J
to

falls into a class of functionals which can be written in the fore

tf

! I!
I[u] = E fn+l (x,t) + fn+l (u,t) dt

t o

The generalized Hamiltonian for a variational problem invol.ving a

functional of the type given in Equation (4°63) and differential

(4.63)

equatimzs of the type given in Equation (4.61) can be written in the

following manner

! ! t! t!

H -- Pi fi-fn÷l ÷ Pi fi- fn+l (4.64)

By grouping the terms in Equation (4.64) in a proper manner, the

generalized Hamiltonian, under the restrictions given in Equation
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(4.61) and (4.63), becomes separable in the state and control, i.e.,

11 It

H=H (x,t) + H (u,t) (4.65)

Thus the cross partial derivatives of fi and H with respect to the

state and control vanish, i.e.,

f_jUk = o

H = 0

uisxk

Huiujxk= 0

HuijPk=x 0
(4.66)

In view of the assumption imposed by Equation (4.60) and the conditions

given by Equation (4.66), the di£ferontial equations to be applied to

the interplanetary transfer are the following

_j = _Xk%+M_'jxk+f_uk% +h_kfj,k

_ij = /'ixkhkj + /'iuk Rkj + hikSkj

tij = -Hxix k hkj -HxiP j fkj - fik Skj
(4.67)



with the optimality condition
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(4.68)

Matrix form_ations of the terms in Equations (4.67) and (4.58),

applied to the Earth-Mars trans£er, appear in Appendix B. The

optimal corrective control, 8a(t), and the resulting mean state

deviations 6_, 6_, 6_, and 6g, have been computed for several cases,

and the results are illustrated in Figures 21 through 31. The plots

labeled a illustrate the time histories of the mean deviations o£ the

state from the deterministic trajectory. The plots labeled b show the

corrective optimal control 6a(t). 6a is plotted in degrees.

The parameters of interest in the following respective figures

are:

For Figure 21,

For Figures 22 through 24,

For Figure 25,

a a = .05T

Ta = 1day

a = 0

a0 = 0

Taranges from i0 days to 1000 days

qa = .02T

o = 0

a0 = 0

O _ I °

T = i day

a a = 0

o 0 = 0
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X

Figure 21a. Optimal Heal State Deviation Time Histories

(Oa-- .OST, Ta= 1 Day, o = O, o0= O)

'02 I
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" 0 I - I I I
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Figure 21b° Optimal Control Deviation Time Histor7

(Oa= .OST, Taft 1 Day', oaf O, o0= O)
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Figure 22a. Optimal l_an State Deviation Time Histories

(oa= .02T, Ta 10 Days, Oa= 0, o0= 0)
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Figure 22b. Optiml Control Deviation Time History

(Oa= .02T, Ta= I0 Days,oa= 0, o0= 0)
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Figure 23a.
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Optimal Mean State Deviation Time Histories

(aa-- .02T, Ta= 100 Days, aa= 0, a0= 0)
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Figure 23b. Optimal Control Deviation Time History

(Oa= .OZT, Ta= 100 Days, aa= O, OO= O)
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Figure 24a.

.01 -

Optimal Hean State Deviation Time Histories

(o a .02T, Ta= 1000 Days, oa= O, o0= O)
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Figure 24b. Opting1 Contxol Deviation Tree History

(Oa= .02T, Ta= 1000 Days, oa= 0, o0= 0)
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Figure 25a. Optimal Mean State Deflation Time Histories (aa-- 0, o = 1°
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Figure 25b. Optimal Control Deviation Time History

(Oa= O, aa= 1°, T= = 1 Day, o0 = O)
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Figure 26a. Opti_al Mean State Deviation Time Histories

= = _o, T = 1 Day, o 0 = O)
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Figure 26b. Optimal Control Deviation Time History

(oa = O, Oa = ho, Ta = 1 Day, o0 = O)
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Figure 27a. Optimal Mean State Deviation Time Histories

(oa = 0, oa = %=' Ta = I0 Days, o0 = 0)
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Figure 27b. Optimal Control Deviatian Time History

(oa = 0, oa = %0, Ta = I0 Days, a0 = 0)



91

"b

TIME(DAYS)

Figure 28a. Optiml Mean State Deviation Time Histories

(o a = 0, o a =_o Ta = 100 Days , o 0 = 0)
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Figure 28b. OptimalControl Deviation TimeHistory

= =_° T = zooDays, oo= o)(o a O, o a ' a
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Figure Z9b. Optimal Control Deviati_ Time History

(o a O, o= %o, Ta 1000 Days, o 0 O)
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Figure 30a. Optimal Mean State Deviation Time Histories

(oa = .02T, Ta = I Day, oa = 0, o0 = i x i0"3)
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Figure 30b. Optiml Control Deviation Time History

(o a = .02T, Ta = i Day, a a = 0, a 0 = i x 10 -5)
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Figure 31a. Optimal Mean State Deviation Time Histories

(o a= .02T, Ta- 1 Day, oa = 0, o0 = 2 x 10 -3 )

w
LO

W
O

W
O

.J
0

z
0
o

.01

0

-.01

-.02

-.03

I I t
50 _ I00 _ 150

TIME (DAYS)

r3a

I
200

Figure 3lb. Optimal Control Deviation Time History

(o a = .02T, Ta = 1 Day, oa = 0, o0 = 2 x 10 -3)



For Figures 26 through 29, Ta ranges from 1 day to 1000 days

a a = 0

_0 = 0

For Figures 30 through 51, _0 ranges from 1 x 10 .3 to 2 x 10 .5

o a = .02T

Ta = Iday

a ffi 0
Q

Several characteristics of the optimal stochastic control and re-

The importantsulting mean trajectories can be seen in the figures.

characteristics can be su_arized as £ollows:

1.

o

o

The optiml stochastic control angle _ (t), is approxi-

mately equal to the deteministic control angle a (t),

except in the region of rapid change of the control angle

i

a (t). (See Figure A.2). The figures show that the

stochastic control a(t) lags slightly behind the deter-

ministic control a (t) during the region of rapid change.

In all cases the control deviation 6a(t) is much less

than the standard deviation of the perturbing noise. This

characteristic adds some justification for neglecting the

second order terms containing the control correction 6a(t).

The mean state deviations are seen to undergo peaks in the

region of rapid change in the control angle a (t). This

characteristic is a cemsequence of the nature of the control

deviation, which also exhibits a peak in this region. It

should be pointed out that the mean states are controlled

so as to satisfy the same terminal constraints (rendezvous
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with Mars) as the deterministic state is controlled to

satisfy in Appendix A. For this reason the mean state

deviations do not all tend to zero at the terminal time.

For instance, at the time when the mean state satisfies

the terms1 cenctitions, the determ_stic state may have

not yet reached the terminal state computed in Appenctix A.

In this case, a nonzero 6_i(t£) will occur at the

final time.

The effect of noise on the final time is illustrated in Figure 52,

where the final time de_ation is plotted versus the standard

deviations o£ the noise. It is seen that for noise occurring in

the thrust orientation angle a (t), the final time increases with

increasing standard deviation of the noise. For noise occurrJ_,g in

the thrust./mass magnitude, the final time decreases with increasing

standard deviation o£ the noise. However, the change in final time

for noise in the thrust/mass magnitude is very slight.

The optim-1 control developed in this chapter appears to have

the properties which are desired o£ a control which must guide a

dynamic system in the presence of noise. Loosely speaking, the

stochastic control developed here guides the mean of the ensemble of

stochastic trajectories to the terminal c_ditions, while extremizing

the expected value of a perfomance index functional of the type

given in Equation (4.2). It should be noted that although the non-

random control developed here does the "best" job possible in an

average, or expected value, sense. The standard deviations of

96
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state at the final time are not appreciable smaller than they were

in the case of the deterministic c0_trol. This indicates that in order

to achieve a creditable degree o£ state accuracy at the final time,

some informatio_ about the perturbations which actually occur must be

utilized by the controller to update the control during the ¢o_trolling

interval.
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OPTIMAL_IC CONTROL CONDITIONED

ON DISCRETE OBS_RVATI(I_IS OF THE PROC_

Introduction

In Chapter 4 the optimal stochastic control problem was solved

by obtaining the conditions necessary for the functional given in

Equation (4.9), i.e.,

tf

J [u] = E [vi(xi (tf)-xif)+"i(xi (to)-Xio) + / fn+l(X,U,t) +pi(_i-fi) dt]

to (s.1)

to be an e_r_, where the expected _-al_ of the functional is defined

as follows

m go

EC') =.Jr.../ C') fC§ ,,Ctl) ,nCt2)_ .... )d§dnCti) ...
CS,Z)

The fraction f(§ ,n(tl) , . (t2) ,

function of the entire noise process ni(t ) in the region

and the initial state umcertainty errors §i' i=1, ..., n.

necessary conditions take the following fore

...) is the joint probability density

toitS_

The

E[_i-fi] - 0

E[ i xil- o

o

(s.3)

at each point of time in the controlling interval to!t<tf,
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E[xi(to)] ffi xi0

F[PiCto)] = _i (S.4)

100

at the initial time to, and

E[x - xi:f

E[pi(t )] =

= 0 (S.S)

at the teminal time tf.

The optimal cmtrol, which is derived as a solution to Equations

(5.5) with end conditions given by Equations (5.4) and (5.5), could

be called an expected value, or '_ean" value control, since this control pro-

cedure drives the expected value of a stochastic ensemble of trajectories

to satisfy the deterministic end conditions and, in so doing,

extremizes the expected value o£ some performance index functional.

The optimal stochastic control procedure developed in (_spter 4 is

better than the optimal deterministic control procedure derived in

Appendix A in the sense that an average over a stochastic ensemble is

controlled, rather than a deterministic idealization. Hoover, the

noise in general, has a far greater effect on the dynamic system than

that which can be compensated for by any control program based on a

priori noise statistics. This is illustrated in Figures 5 through 18

at the end o£ (_apter 5, where it is seen that in general the standard

deviations are much larger than the corresponding mean deviations. It
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should also be noted-that the Monte Carlo simulated trajectory

illustrated in Figure 19, exhibits sta_ deviations which are nmach

greater than the corresponding mean deviations shown in Figure 7A.

Since the expected, or me_, deviations are used as a basis for

deriving the_optimal control in (_pter 4, Ci.e., the control

essentially guides the mean), it can be concluded that, in general,

the implementation o£ a nonrandom control based on a priori

statistics of the noise process will not insure that the terminal

constraints will be met satis£actorily.

This chapter is devoted to the derivation o£ an optiml

stochastic control which incorporates information gained during the

controlling interval into the control program. The in£ormation about

the process is in the form of observations of some function o£ the

state, which are made at discrete points in time, and which are

available to the controller with no time lag. The control is

essentially designed to guide the expected value o£ the state,

conditioned on the observations, to satisfy original terminal constraints,

while extremizing the conditional mean o£ the original performanco

index functional I [u].

Suppose there exists a maltidimensional function of the state

of the dynamic system

zi = gi(x,t) i = 1, ..., p (5.6)

where pin. In addition, suppose that the controller has available

sample values of the function



Yi Ct) = giCx,t) + ziCt) C5.7)
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at discrete instances of time tl, t2, t3, ..., tk, ..., tN, where

ei(tk) is a normal random observation error with the following a

priori statistics

E[¢iCtk)]- o

E [¢i Ctk) cj Ct_) ]

E[ci(t k) 6xjCt_)]

k = z,z,...N (s.8)

z
Pij 6k_ (S.9)

- 0 (S.IO)

The optimal stochastic control procedure in the presence of these

"observations" can be updated or corrected after each particular

observation is made available to the controller.

Theoretical Development

A method for updating the optimal stochastic program after

an observation value is made available to the controller is presented

in the following presentation. Ccasider the case in which k

observations have been made at times t 1, t 2, ..., and tk,

respectively, and the controller has updated the control program at

the times t 1, t 2, .o., tk_l, in accordance with the information

gained by the previous observations. The optimal control for the

time segment tk<_t<_tk+l, where tk÷ 1 is the time of the next obser-

vatien, can be found by extremizing the functional

r

J[u]
ELvi(xi(tf)-xif) ÷ ui(xi(t k) - xi(tk) ) ÷

1l_Pi(Xi'fi )dr Y(tk), Y(tk_l), ..., Y(t I

(5.11)
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EI(') [ Y(tk) ,Y(tk_l) ,- • -I =

_. _. (5.12)

and xiCtk) is the conditional mean of xiCtk)

the observations made at t 1, t2,..., t k, i.e.,

given the values of

xi(_ = E[xiCt k) I yCtk), YC_k_l),..., yCtl)] C5.13)

fC_ ,n,c I yCtQ, y(__l ) ,...) is the joint conctitiorm/
The function

probability density function of the noise process hi(t), the initial

uncertainty errors §i' and the observatiml errors c i.

By carrying out the variation of the fractional given in Equation

(5o 11) in the same manner as the variation of the functional was carried

out in Ompter 4, the following set of necessary conditions can be

obtained

" IE[xi-f i y(_k), y(tk_l},... ] = 0

E[Pi_xi I y(tk), y(tk_l),...] = 0

F'[Hu I YCtk) _ YOrk-I)"'" ] = 0
i

(5.14)

at all points of time in the contmll_g interval t0!t<__tf,

E[xi(tk) I y(tk)''." ] = xiCtk)

E[Pi(tk) I YCZk)"'" ] = _'i C5o15)
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at the observation time tk, and

E[xi(t f) I Y(tk),...] = xif

 [pi(tf ) J Y(tk)""] = ""i
.,

E[HCtf) I yCtk)"'" ] = 0 (5.16)

at the final tim t f.

It should be noted that although the control for the interval

tk<t<tk+ 1, which is based on the values of the observations made at

t 1, t 2, oo., tk, is computed under the assumption that it will drive

the conditi_ml mean state to the terminal conditions, specified by

Bquation (5.16), the control procedure will actually be replaced by

an updated control procedure after each new observation is made

available to the c____tro!!er. For instance, at the ti_ of the next

observatim tk+l, the control for the interval tk+1<_t<_tk+2 will be

computed on the basis of the values of the observations made at tl,

t2,°.o, tk, tk+lO

The conditional necessary conditions given by Equations (5.14),

can be expanded about the optimal deterministic solution given by

Equations (4.25), (4.26), and (4.27), to obtain the set of differential

equati_ls which describe the behavior of the first and second moments

of the state and Lagrange multiplier deviations. They. a__tl_ws

I

6X.
1 = fixj % ÷f ujC uj÷ j 

½fiuj_(6uj6_+6Ujnk+"j6Uk +Rjk) + fixj_ (6x36Uk+h)k)
(5.17)
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"iUj_k J _- _ ,- j_Uk+Rjk) -

_i.j.kC_j6_k÷hjk)-H._.jpkNjk-

H'ejPk% ÷ (5.18)

_4ij " _ix k % ÷ Mi k 0x k + fi_ (6Uk6Xj+hjk) ÷

(_i "k÷hik_ fJ"k (5.19)

Nij = f_x k % " Nik fkxj ÷ fiuk(6Uk6Pj+£jk)

- Hik HXkXj - (6_i6Uk÷hik) Hxju k (s.zo)

_ij = fix k hkj + fiUk(6UkWj+_j) " hikBkj
(5.21)

Huixj 6xj * Huiuj (6uj_) ÷ HuiPj "P3 ÷

][ Huiuju k (6uj"uk+nj6Uk+6Ujnk + Rjk) +

1

][ Huixjx k Mjk + HuixjUk(6xj6Uk * hjk) +

HuixjPk Njk + HuiujPk (6uj6_ ÷ %) = 0

(5.22)

(s.23)



where

=CO = E[-Ct) I YCtk), yCtk_z),...]
t> t k

(S.24)

The £ollowing definiti_ were used in the preceding expressions
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Mij " E[6xi6x j l YCtk),...] CS.2S)

hij = E[6xiqj I yCtk)""] CS._6)

Nij = E[6xi6P j I YCtk),...] C5.27)

£ij = E[6Pinj I YCtk )''''] (5.28)

_J = E[ninJ [ YCtk)"'" ] CS'29)

I£ the conditionaL1 expected terminal constraints, i.e., _atioas

C5.16), are expanded about the deterministic ter_l conditions, i.e.,

_uatic_ (4.50), (4.51), and (4.52), the £ollowing expressions

relating 6_ ict£), 6pi(t£), 6u i Ct£) and 6t-£ are derived.

xi Ct_ )_f + _iCtf) = o CS°3O)

dipiCt £) = -6u i CS.31)

n Ct£ )6_f + _i6% + Hxi j + Hp +

Hui C6ui+_-i) 1 - -+ _Huiuj (6ui6uj+6uinj+6ujni+Rij)

Hxiuj (6_.6u.÷h..) + + C6Pi6Uj+fij )I 3 }3: HxiPjNi j Hpiu j
CS.3Z)
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The initial conditions at the time t k for the variables in

Equations (5.17) through (5.23) can be listd in the following

manner

E[_xi (tk) lyCtQ ,... ]

E [6Pitt k) lyCtk),...]

E[,iCt k) lyCtQ,...]

Et_xi_xj IyC_),...]

E[6xiSP j [Y(t k),.--]

E["inJ I Y(tk)"'" ]

E[6xinj I yctk) "'" ]

E[SPi, j Y(tk),...]

= _xiCtk)

= 4 ctp

-- _i(tk)

t"

= 5jc )

" Nij Ctk)

=

= (s.33)

o£ Equations (5.33) are

on the basis o£ the

that is,

where the quantities on the right hand side

conditional mean values, which are computed

observations made at times tl,..-, t k,

:(tk) - E['Ctk) I yCtk)' yCtk-1)""] (5.34)

Once the initial conditions, i;e., the quantities on the right hand

side o£ Equations (5.33) are computed on the basis o£ the obser-

vations Yi(tl),..;, Yk(tk), Equatioas (5.17) through (5.23) form a

two-point boundary value problem with split end conditions at the

terminal time t£ and the observation time t k. The boundary value
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controlling interval tk<t<_t£ in terms of R_j(t k)

by the following generalizations of Equations (2.20)

problem can be solved for the corrected values of 6Pi(tk) = 6_i ,

which determine the updated optimal control progrmn, and the

corrected value of the te_ time deviation 6if.

It should be noted that the quantities Rij and _j

in the differential equations are determined throughout the

A

and .j

and (2.19)

respectively.

2

Rij(t) = aij +E_ij(tk)-°ij21 e'SiJ (t'tk)
i,j not summed

Wi(t) = e'Bij(t-tk )"ni(tk) (5.55)

The corrective control program, initiated at the observation

time tk, is designed to guide the conditional mean of the ensemble

of stochastic trajectories, given the observation values Yi(tk), Yi(tk_l),

oo. Yi(tl), to the terminal constraints. It is assumed that at the

time of the last observation tk_ 1 a control was initiated on the

basis of the observations made up to that time, i.e., Yi(tk_l),

Yi(tk_2),..., Yi(tl), and that the conditional means of the process,

based on that control program, are available to the controller at tk-

Thus the controller has available the following quantities, prior to

the observation at t k



E[6xi(t k) [ Y(tk_l),...] =

E[6Pi(t k) I Y(tk_l),-..] =

 [,iCtk) I yCtk_l),...] -

E[SxiSx j [ Y(tk_l),---] =

E[SxiSP j [ Y(tk_l),--.] =

E[nin j

E[Sxin j

E[SPinj [ Y(tk-1)""]

" j(tk)

Nij(t k)

hij (tk)

fij (tk) (s.36)

where the bar designates the cmditional expected value at the time t

given the values of the observaticms made prior to t, i;e.,
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:(t) = E[-(t) Y(tk_l), Y(tk_2)...] tk_l<t<_t k (5.37)

The retaining task is the developing of a technique for computing the

initial conditions for the boundary value problem given in Equati_s

(5.53) in terms of the observation values Yi(tk), Yi(tk_l),...,

Y(tl), and the previously computed omaditional moments given in

Eqtmtions (5.36).

In order to simplify the notation, define the Zn+m dimensional

generalized state deviation variable 8xi(t) , the (2n+m) 2 dimensional

generalized second moment Mij, and the generalized covarianc_ Pij '

in the follo_g manner
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6xi -- _xi , i = i, ..., n

6xi = 6pi_n , i = n+l, ..., 2n

6xi = ni_Zn , i = 2n+l, ..., 2n+m

"ij =  xj]

Pij =

(s.38)

It should be noted that 6xi(tk) and the observations Yi(tk),

Yi(tk_l), ..., Yi(tl) are jointly distributed random variables which

possess some joint probability density function. It is recognized

that 6xi(tk) is some function of yi(tk), Yi(tk_l), ..., Yi(tl),

that is to say

6xi(t k) = G i[y(tk), Y(tk_l), ...] (5.39)

In order to determine the function Gi, Equation (5.39) will

be expanded about the deteministic value o£ Yi(tk) i.e.,

Yi (tk) - gi (x 'tk) (5.40)

The expansion will be carried out to include only linear terms in

Yi(tk), that is, quadratic and higher order terms will be neglected

in the analysis. The expansion can be expressed in the following

manner

|
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^ ,

6×i(tk) = Gi[Y (tk), Y(tk_ 1),..-] +

(Y (tk), Y(tk_l) ,.. .) [yj(tk)-Y j (tk)] (5.41)

where

Giy j - _yj

The coefficients Gi and Giy _ can be determined in terms of the

known quantities given in Equations (5.36) and covariance components

2

of the observation error Pij with the aid of the following theorem

from probability theory. The theorem, which is proved in Appendix

D, can be stated in the following manner

I

E[FCyCtk)) 6xiCt k) l yCtk_1 ), yCtk_2),.-.] =

(5.42)

Consider an application of the theorem given in 5quation (5.42) for

the case in which FCy(_)) = I. For this special case, the theorem

can be stated in the following manner

E[6xi(t k) I Y(tk_l) ,...] = E[F.(6xi(tk)IY(tk)...)lyCtk_l)...]

CS.43)

If the expression given in Equati_ (5.41) is substituted into the

right side of 5quation (5.43), the following result is obtained

(5.44)
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Equation (5.44) reduces to the following expression

6X-i (t k) = Gi + Giy j [7j (t k) "Yj (t k) ]
(s.4s)

:By substituting the result obtained in Equation (5.45) back into

Equation (S,41), the £ollowing expression for 6Xi(tk) is obtained

6xiCtk) = 6_i(tk) + Giyj[YjCtk)-YjCtk) ] (S.46)

consider an applicatic_ of the theorem given in Equation (5.42) in

which F(Y(tk)) = Yk(tk)-Yk(tk)= _yk(tk). ForthisspeciaZcase,

Equatiml (5.42) can be stated in the £ollowinE .m_ner

I

E[6Yk(tk) 6xi(tk ) lY(tk_1).-.] =

E _Tk(tk) E(6xi(t k) Y(tk),...)] Y(tk_l),..

(5.47)

If the expression given in Equation (5.46) is substituted into the

right side o£ Equation. (5.47), the following result is obtained

E[6Yk6Xi I Y(tk'l]"" ]- 6_k6_i +

GiyjE[6Yk(Yj-Yj) J Y(tk-1)""]

By rearranging the terms in Equation (5.48), the following expression

is obtained

(5.48)

E[(6yk-6_k ) (6Xi-6_i) Y(tk_l)...] =

(5.49)
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where

8yi = yi-y i

In order to formulate the terns involvi_ 8yi in Equation

C5.49), in terns of kno_1 quantities, consider an expansion of

Equation C5,7)about the detez_stic value of the state xi*.

The expansion can be written as follows

8yi+y i (t) gi(x*,t) +_-_-agi 6xj +

1 a2gi*

_j_k %_k + "'" + _i (s.so)

By subtracting out Equation (5.6) from the expression given in

Equation (5.50), and by using the following notatioa, i.e.,

* 2 *
agi _ a, gi

_xj gix.j _xj x k = gixjx k
(5.51)

the expansion given in Equation (5.50) can be written as follows

-- % +½ " %_Xk+ci
_Yi gixj glxjx k

(5.sz)

Equation (5.52) can be written in terms of the generalized state

deviations 8xi as follows

8yi = gixjSXj + ½ gixjx k 8XjSXk + e i
(s.s3)

with the restriction that
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gi = 0
xj

gi = 0 ,
XjXk

j >n

j >n or k>n (5.54)

The expected value o£ 6y i can be expressed as £ollows

6y-"i = gixj6X] + ½ giXjX k Mjk
(s.ss)

By substituting Equation (5.53) and Equation (5.55) into the Equation

(5.49), and neglecting terms in 6x1 o£ higher order than the second,

the £ollowing expression is derived,

i Y(tk_l)...]

Now by recalling Equations (5.8), (5.9), and (5.10), i.e., that

E[¢iCtk)] = 0

2

_[¢i(tk)¢j(tk)] = Pij

E[¢i(tk)6Xj(tk)] = 0

the expected value operation can be carried out in F_ation (5.56),

and the £ollowing result is obtained

= p + 2

Pijgkxj Giyj [gkx_gjxm _m Pkj ] (5.57)
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In order to solve for the coefficient Giy j , the quantity Bij

is defined by the following expression

[gkxigLxj Pij + Pk_ 2] Bkm = 6_m (5.58)

_ti)lyg Equation (S.ST) by the quantity Bkn, the £ollow-

ing result is obtained

Pijgkxj Bkn" Giy j 6jn " Giy n
(5.59)

Substitution of the expression for Giy n , given in Equation (5.59),

into the expression for 6xi(t), given in F_mtion (5.46), leads to

the follo_ result,

6xi(tk) -- 6_i(tk) + Pi&gkX& BLj [6Yj(tk)'6yj(tk))
(5.60)

where 6y--j is defined in Equation (S.SS).

5luation (5.60) relates the conditiorml mean of the generalized

state deviation, given the observations yi(tk), yi(tk_ 1) ,. • • to the

known conditional mean of the state deviatien, given the previous

observations Y(tk_ 1) , y(t k_2) , ... and the observatien deviation

value _Yi(tk), It is .interesting to note that the previous obser-

vation values 6Yi(tk_l), 6Yi(tk_2) , ... 6Yi(tl) are not contained

explicitly in 5quation (S.60), but are implicitly contained in the

value of 6_i(tk).



The
components o£ 6xi(tk) break down into the components

A

o£ 8x i(tk) , 6Pi(tk) , and ni(tk)' as shown in the de£initic_s

given in Equations (5.38). The remainder o£ the quantities

given in Equations (5.33), i.e., Hij' Nij' hij' £ij' and Rij'

can be computed with equations derived in the £ollowing discussion.

Omsider the. identity

E[(6Xi-_Xi)(6Xj-6Xj) I Y(tk-l)"'" ] "

E[(6Xi-6Xi) (6Xj-6Xj) I y(tk_l) ,...] (5.61)

Substitution o£ Equation (5.60) into the right hand side o£ Equation

(5.6]) leads to the following expression

E[(_Xi-6_i )(_xj-6Xj) I Y(tk-l)"" ] =

E[(6Xi-6_i)(Sxj-+_j) I Y(tk.1)...]-

E[(axi'aTi)Pj&gkx&Bkm(aYm-agO I Y(tk_l )...] -

E [Pi&gkX Bkm(6Ym- 6YJ Pj pgqxpBqn ("Yn -"Yn )
Y(tk_l)...]

(5.62)
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By substituting Equations

£ollowing expression can be obtained,

E[ (6Xi-6Xi) (SXj -SXj) y(tk_ I)

Pij -Pi&gkx& Blm_Jj n

(5.53) and (5.60) into Equation (5.62), the

(s.63)
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Consider for a moment the correlation between the error in the

conditional mean and the observation deviation, i.e.,

E[C_xi-_xi)C_yj) Y(tk_l)... ] =

E[(6xi-_i)(6yj)IY(tk-z)...] Pizgkx&Bkm E[ (Sym-8_m)8y j lY(tk_l)

(5.64)

After carrying out the expected value operation, Equation (5.64)

reduces to

E[(SXi-SXi) 8yj Y(tk_l)--.l =

...]

Pi&gjxt-Pi&gkx& 6kj - 0 (5.55)

It is seen from _tion (5.65) tDmt *_ge error in the conditional mean,
A

(6xi(tk)-6xi(tk)) is uncorrelated through the second order with the

observation 8Yi(tk). It will be assumed that this lack of correlation

is sufficient to imply that the following identity is valid to second

order

E[(Sxi-SXi )(SXj-SXj) J y(tk), Y(tk_l),... Y(tl)] -

15[(SXi-6Xi)(6Xj-6xj) [ y(tk_l), Y(tk_Z) , ... Y(tl)]

By incorporating Equation C5.65) into Equation (5.65), the following

expression for the corrected generalized covariance is obtained

(5.66)



Pij- Pij (5.67)

The generalized second moment from the deterministic trajectory is

derived from the following expression
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A A

MijCtk) ffi PijCtk) " 6xiCtk) 6xjCt k) (5.68)

A

The components of Mij can be broken down into the quantities ._

Mij' Nij' hij' iij' and Rij"

Equations (5.60) and (5.68) yield the conditional means and

second moments which are used as initial conditions in the two-

point botmdary value problem. The solution to this problem will

yield the corrected optimal stochastic control for the interval

tk <_ t < tk+ I. This corrected control could be called a

"conditional mean" control, since the control essentially guides the

conditional mean, given a set of observations, to satisfy the original

deterministic terminal constraints and, in so doing, extremizes the

conditional mean of the performance index functional.

Since the equation which updates the conditional mean at the

time of observation tk, i.e., Equation (5.60), contains explicitly

only the value of the present observation YiCtk), the scheme can

be used recursively at all of the observation times tl, t2 , ..., _.
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Application To The _rth-Mars Transfer Problem

The results of this dmpter will now be applied to the Earth-

Mars transfer problem. Since for this application the Hamiltonian

H(x,u,p,t) and the function fi(x,u,t) are both separable in the

state and control, the conditional differential equations, given

in Equations (5.17) and (5.18), and the conditional optimality

condition, i.e., Equation (5.25), reduce to the following system of

equations

H N.
xjxjp k ]k

+ 6ujn-k + n] 6u k +Sk ) + %iujPk(6Uj 6N+fjk )

(5.69)

= 0

It is shown in Appendix E that the generalized covariance Pij

obeys the following differential equation

Pij -- rik Pkj + Pikrjk (5.70)
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where rij is a (2n+m) 2 dimensic_l quantity which is defined by

the following relations

rij = fixj

rij = o

finjrij = -2n

rij = . Hxi.nXj

rij = - Hxi-nPj -n

= - i -2n

rij = 0

rij -- 0

rij = "Bi-Zn j-2n

, i = l,...,n

j = I,..., n

, i = 1,... n
j = **+1,..., 2n

i = 1, .... , n

j = 2n+l,..., 2n+m

i = n+l, ..., 2n

j =1, ...,n

i = n+l, ..., 2n

j = n+l, ..., 2n

i = n+l, ..., 2n

j = 2n+l, ..., 2n+m

i = 2n+l,..., 2n+m

j = 1, ..., n

i = 2n÷l, ..., 2n+m

j = n+l, ..., 2n

i = 2n+l,..., 2n+m

j = 2n+l, ..., 2n+m

(s.n)

It is therefore convenient to integrate Equation (5.70) instead of

the set of Equations (5.19), (5.20), (5.21), and (5.22), and then

obtain the quantities Mij , Nij, hij , and fij' at each point in

time from the relation

/{ij " Pij ÷ _[i6[j
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Matrix formulations of the terms in Equations (5.69) and (5.70),

for the example problem considered here, are given in Appendix B.

For the Earth-Mars transfer problem, the observational

information is in the form of the time rate of change of the position

vector of the spacecraft relative to the Earth. The values o£ this

observable, referred to here as range rate, are available to the

controller at discrete points in time. Assuming that the Earth moves

in a circular orbit about the Sum, the distance from the Earth to

the spacecraft is defined by the following expression

p -- [r2+R_-2rkos(0-w(t-t0))_ ] (S.72)

where R is the orbital radius of the Earth, and _ is the angular

velocity of the Earth about the Sun. The rate of change of the Earth-

spacecraft distance is accordingly defined by the following expression

= _-Rucos(0-_(t'to)) + rR( v -_)sin(0-_(t-t0) )
(5.7:3)

The function zi, in Equation (5.6), becomes the scalar variable

for the Earth-Hars transfer problem. Thus the scalar observation

Y(tk) is given by the following relation

yC_) " pCtk) + _(_) CS.74)

where



Etc(tk)] = 0

E[e(tk)2 ] = Oe 2 (s.7s)

122

Equations (S.SS), (S.fi0): and (S.67), are applied ot the inter-

planetary transfer problem so that the control can be updated at the

observation times. Matrix formulations o£ the terms in these equations

are given in Appendix B.

The corrective control scheme, based on range-rate observations

made at discrete points in time, is applied to two Monte Carlo

simulated trajectories. The first trajectory considered is the

example trajectory presented in Chapter 3, Figure 19. The parameters

o£ interest £or the stochastic trajectory are o a = .0ST,

Ta = 1 day, o a = 0, and o 0 = 0. The time histories of the

man state deviations and the standard deviations o£ an ensemble of

trajectories possessing the preceding noise parameters are shown in

Chapter 5, Figure 7. The a priori optimal stochastic control program,

which is computed in the absence of any observational information,

and the resulting optimal mean state deviations for the same ensemble

o£ trajectories is shown in Chapter 4, Figure 21.

A series of observation-correction operations are made on the

trajectory in Figure 19, and the results are presented in Figure 53.

The standard deviation of the error in each observation is assumed

to be 10-3VE , where VE is the velocity o£ the Earth. An outline of

the steps of the recursive observation-correction scheme, with

appropriate referrals to the figures and discussions of the interesting

characteristics o_ the results, is given in the subsequent presentation.
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a. An observation is made 30 days after the time of initiation

of the transfer. The conditional mean state deviations,

given the observation, are illustrated in Figure 33a.

Discontinuities occur in the curves at the time of obser-

vation and indicate the change from a priori mean state

deviations to conditional mean state deviations. Note

that no control correction has been made.

b. The conditional standard deviations of the state components,

given the observation, are given in Figure 35%. Note the

discontinuity at the time the observation is made. A

comparison of Figure 35% with Figure To in Chapter 3 shows

that the standard deviations are smaller after the obser-

vation is made, than the corresponding standard deviations

in the case in which no observation is made. The smaller

standard deviation indicates the controller's increased

knowledge of the actual state history in the time interval

after the observation.

c. A control correction is made on the basis of the observation

value, and the resulting mean deviations are illustrated in

Figure 55c. Note the peaks in the mean deviations at the

time of rapid change of the thrust direction angle _(t).

d. The optimal control deviation is illustrated in Figure 3_I.

Note the discontinuity at the time of the observation, and

the peak at the time of rapid change in the thrust direction

angle.

e. The resulting state deviations of the sample trajectory are

presented in Figure 55e. It can be seen, by comparing the
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state deviations in Figure 33e with those of the un-

corrected trajectory in Figure 19, that the terminal constraints

are met more accurately in the case where the control correction

is performed.

Another observation is made at t = 60 days, and the

resulting conditional mean deviations are presented in

Figure 33f. From a comparison of the conditional mean

deviations with the actual deviations in Figure 33e, it

can be seen that the conditional mean deviations approxi-

mate the sample state deviations m_ch more accurately, after

two observati_Is are made, than in the previous case.

The standard deviations of the state components are given in

Figure 33g.

A control correction is made and the resulting mean state

deviations are presented in Figure 33h.

The updated control deviation appears in Figure 33i.

The resulting state deviations of the sample trajectory

are presented in Figure 33j. Note how the simulated state

deviation cc_ponents follow paths which are similar to the

conditional mean state deviation values, shown in Figure

33h. It should also be noted that the conditional mean

deviations are always controlled to meet the terminal

constraints. For this reason, an indication as to how well

the updated control program is performing, is how close the

actual simulated trajectory state deviations are to the

conditional mean deviations.
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k. A third observation is made at t = 90 days, and the

conditional means are given in Figure 33k. Note that the

corrections in the conditional means at the third obser-

vation time are small in comparison to previous corrections.

This is because the conditional mean deviations approximate

the actual state deviations more closely than before

observations were taken.

I. The updated standard deviations are presented in Figure 331.

m. The mean state deviations for the third control correction

appear in Figure 33m.

n. The third corrective control deviation appears in Figure 33n.

o. The resulting sample state deviations for the third control

correction appear in Figure 33o.

p. In order to make a precise comparison of the conditional

mean state deviations to the actual sample state deviations,

for the case of three observations, Figure 33m is super-

imposed on Figure 33o. The superposition of the velocity

deviations is presented in Figure 35p. Note that as each

new observation is made available to the controller, the

updated conditional mean deviations, which are computed on

the basis of the most recent observation value, are closer

to the sample state deviations than the previous conditional

mean deviations.

q. The superposition of the position deviations is presented

in Figure 33q.

r. In order to demonstrate the effectiveness of the preced-

ing observation-correction scheme at increasing the terminal



132

Figure 33k. Conditional Hean State Deviation Time Histories

%
-X

(Observation at t = 30 Days, t = 60 Days, and t = 90

Days, a = 10-3)

o .st

50 I00 150
z TIME (DAYS)

in

Figure 331. Conditional Standard Deviation Time Histories

(Observations at t = 30 Days, t = 60 Days, and

t = 90 Days, o = 10 "3)



133

0

ILl

z -3

W

Figure 33m.

!
I00 150 _ 200
I TIME(DAYS)_ _

Optimal C_Iditional Mean State Deviation Time Histories

(control Correction at t = 30 Days, t = 60 Days, t = 90 Days,

a = 10-3)

c I I I I
"-"--50--, I00 150 ,200

TIME(DAYS)

Figure 33n. Optimal Corrective Control Deviation Time History (Control

Correction at t = 30 Days, t = 60 Days, and t = 90 Days,

a¢ = 10"3)



134

_o .4 - ... _;8
- _ .'... ...-.,.-".'.-'-_-'"

• _ - .,,. • o _ U ..-
X • • _ee • • • _ eo

. "..,("- • _ _ ".-.
,2 _ • • • eoe e t __

oe eoo . •

o• -I; 0, " ",, _,,,
0 : .-'. % uu

. I.- ,." .-'" . -" %%° ..,"
I • ,,

oI .-"....-" . ."..--'-.::>"
,-, ,,_, ,,_, I_....-" "" ...zoo

l •, % s "° "0- i- "_. "_"'_" ...-" _,;
• • OeI -.:. "._ ..." -

-2i- .... '_ ....."! "".:.......%_ ..... _"

•, ...3F "" .._.-4,- """:':_-'-'
<[ .
Cn

Figure 33o. Simulated State Deviation Time Histories (Control

Correction at t = 30 Days, t = 60 Da_s, and

t = 90 Days, o = I0-3)
E



i

i

l

135

x

4r .. .....0

t • • • • •e • • •

. •" : ."'" _

J /" o
_, 0',-_. ,_/ _ _i" " ",. ,
> ":" _ --. • I00 150 __ ". 200

:'_ "'_ / TIME'DAYS" -_- " -
-I .:..':.. • i , _".._V

(f) e • • °e °e • _o °ec_-.3 "" """ "'.." :

Figure 33p. Comparison of Conditional Mean State Deviations with Simulated

State Deviations (Observations at t = 30. 60. 90 Days.

0¢ Velocity Co,_nents
i0 -3)=

Zm .4 - • ,_.,-,

o ._ ..................................

o "r ..........-ar
O_i - - , ' -" ...'_.." ,"" I I "'"" I

_. I ---..,. _-_ .... I00 150 .:-" _ ;O0

u I' "'--.._ TIMEIDA¥S) _..._I_ _r

_ "-.._...'_
0 --.3 ""_'"'""
Z

-.4
Z

tlJ

Figure 33( I . Comparison o£ Conditional Mean State Deviations with Simulated

State Deviations (Observations at t = 30, 60, 90 Days,

oc = 10"3): Position Components



136

accuracy of the sample trajectory, the norm of the standard

,, and o e at the terminaldeviation components Ou, Cv, Or,

time tf, and the norm of the sample miss components

6u-6u, 6v-6v, 6r-6r, and 6e-6e, at the terminal time

are plotted as a function of the number of observations.

The results are shown in Figure 33r. The norm of the terminal

standard deviations is defined in the following equation.

I_] 2 2 Or(tf)2 IIol _- Ou(t f) + Ov(t f) + + o0(tf)2 (5.76)

[o I could be called the "expected root square miss".

norm of the te._. _Lna! s_mple miss components is defined

in the following equation.

The

IAxl 2= [6u(tf) - 6_(tf) ]

2 2 2

+ [6v(tf)-6_(tf) ] + [6r(tf)-6Y(tf) ] + [6e(tf)-_e (tf) ]

(5.77)

IAxl could be called the "sample root square miss"°

Both the expected root square miss and the sample root sqfiare

miss are seen to decrease as a consequence of each additional

observation. This indicates that the preceding sequence of

observation-correction operations appears to be guiding the

actual sample state closer to satisfying the terminal constraints

as more observations and control corrections are made.
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In order to illustrate the sensitivity of the preceding

method of updating an optimal stochastic control program to the times

at which the observations are taken, the same sample trajectory

illustrated in Figure 19 is used for making single observation-

correction operations at later times in the controlling interval. In

particular, a single observation with an error standard deviation of

IO-3V E is taken at t = 60 days, with the results given in Figure 34,

and a single observation is taken at t -- 120 days, with the results

given in Figure 35. An outline of the results is given in the

subsequent presentation.

For Figure 34,

a. The initial observation is made at t = 60 days. The

conditional state mean deviations are given in Figure 34a.

b. The updated standard deviations are given in Figure 34b.

c. A control correction is made and the corrected mean state

deviations are given in Figure 34c.

d. The corrected control deviation is given in Figure 34d°

For Figure 35,

a. The initial observation is made at t = 120 days. The

conditional mean state deviations are given in Figure 3Sa.

b. The updated standard deviations are given in Figure 3Sb°

c. A control correction is made and the corrected mean state

deviations are given in Figure 35c.

d. The corrected control deviation is given in Figure 35d.
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Figure 34a° Conditional Means State Deviation Time Histories

(Observation at t = 60 Days, o = 10 -3)
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The results shown in Figure 34 and Figure 35 indicate £irst that

the conditional mean state deviations which are derived £rom observations

taken late in the controlling interval accurately predict the actual

state deviations, but also that the control corrections, along with the

resulting mean state deviations, are quite large. See Figures 35c and

35d.

In order to illustrate the performance of the preceding corrective

contrel procedure on a trajectory which is perturbed by highly correlated

noise, the corrective control scheme is applied to a second _nte Carlo

simulated trajectory, and the results are presented in Figure 36. The

parameters o£ interest for the trajectory are oa = .0ST, Ta = 1000 days,

_a = 0, and a0 = 0. An outline of the results is presented in the

subsequent presentation.

a. The sample state deviations which were simulated with the

preceding set o£ noise parameters are presented in Figure

36a.

b. The highly correlated sample noise ha, which occurs in the

thrust/mass magnitude, is presented in Figure 36b.

c. The standard deviations associated with the preceding

noise parameters are presented in Figure 3Sc.

do An observation is made at t = 60 days, and the resulting

conditional mean state deviations are given in Figure 36d.

Note that oE = 10-3VF.

e. The updated standard deviations of the state are presented

in Figure 36e.

£. The resulting conditional mean o£ the noise is given in

Figure 36f.
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g. The updated standard deviation of the noise is presented

in Figure 36g.

h. A control correction is made, and the resulting mean

state deviations are given in Figure 36h.

i. The corrected control deviation is presented in Figure 36i.

j, The sample corrected state deviations appear in Figure 36j.

k. A superposition of Figures 36i and 36j is made in order

to illustrate the effectiveness of the corrected mean state

deviations at approximating the corrected sample state deviations.

The superposition of the velocity components of the state is

given in Figure 36k.

1o The superposition of the position c_ponents of the state

_'_ gi_-en in Figure 361.

The power of the observation process is illustrated in Figure 37.

Observations are made ever), 30 days on a trajectory with the noise

- = = 0, c0 = 3x10 -3. The sequence ofparameters oa .02T, Ta 1 day, oa

Figures 37a through 37g illustrate how the series of recursive observations

forces the standard deviations of the state to lesser and lesser values.

Note that st = 10-3 VE.

The sensitivity of the observation process to the observation

accuracy is illustrated in Figure 38. The parameters of the trajectory

Ta = 0, 00 = 0. Observations are made everyare oa = .0ST, = 1 day, oa

60 days with the following standard deviations of the observation error.
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For Figure 38a,

For Figure 38b,

For Figure 38c,

C

CI
£

-- 0

= 10-3

= 10-2

The standard deviations of the state components are presented in the

figures. It is seen that the standard deviations of the state components

vary directly with the standard deviation o£ the observation error o .
¢
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CONCLUSIONS AND EXTENSIONS TO THE WORK

Summary

In the investigation presented here, the problem of the optimal

control of a nonlinear dynamic system in the presence of noise is

studied. In particular, the investigation is concerned with continuous

autocorrelated noise which perturbs the controls of the dynamic system.

A study is made of the effects of noise in the controls on an

optimal deterministic trajectory. The effects are illustrated for a

simulated study of a low-thrust spacecraft on a minimum time Earth-to-

Mars transfer trajectory. The characteristics of the effects of the

noise illustrated in the study indicate the necessity for developing

an optimal stochastic control° The control procedure developed in the

investigation is a nonrandom function of time, based on a priori know-

ledge of the statistical behavior of the noise process, and is designed

to anticipate the expected effects of the noise on the dynamic system.

A stochastic calculus of variations approach is employed to determine

the control procedure for the stochastic system. The control essentially

guides the expected value of the state to meet the terminal conditions,

while extremizing the expected value of the original deterministic per-

formance index functional o The behavior of the control procedure is

studied for a simulated interplanetary transfer problem.

The results of the study indicate the necessity for presenting

a scheme which will correct the control program, on the basis of infor-

mation gained during the controlling interval, so that the actual state

comes closer to satisfying the terminal constraints, while preserving
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the optimal nature of the control program. A method is presented for

replacing the mean values of the state components and the Lagrange

multipliers, with which the a priori control is computed, with

conditional mean values of these quantities based on the values of state

observations. The scheme is applied to the interplanetary transfer

problem for the case where range-rate observations are taken at discrete

instances of time.

Conclusions

From the study in Ompter 3 of the effects of noise on a non-

linear dynamic system, the following conclusions can be drawn:

1. Both the theory and the numerical studies of the inter-

planetary problem show that the occurrence of noise in a

nonlinear dynamic system implies an ensemble of stochastic

trajectories. The analysis shows that the mean of the ensemble

differs from the deterministic trajectory.

2. In general the standard deviations of the state components

increase with time indefinitely. However, the nonlinearity

of the system and the optimal nature of the control strongly

influence the values of the standard deviations.

5. The statistics of the ensemble of trajectories are highly

dependent on both the variance and the correlation time

associated with the perturbing noise. In general, the mean

state deviations from the deterministic trajectory and the

standard deviations both increase with increasing noise

variance and/or increasing noise correlation time.

4. The results of the n_nerical studies on the interplanetary

transfer problem show that the statistics of the ensemble of
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trajectories for the case in which noise occurs in the

thrust magnitude and for the case in which noise occurs in

the thrust direction are quite different.

Study of the application of the optimal stochastic control to the

interplanetary trans£er problem in Chspter 4 has led to the :£ollcwing

conclusicv_s:

1. In the case of the interplanetary transfer problem the difference

between the a priori optimal stochastic control and the optimal

deterministic control is small in comparison with the perturbing

noise. It should be noted that this my not be the case for

highly nonlinear dynamic systems,

2. In the case of the interplanetary transfer problem, the

implementation of an optimal stoc_mstic control which is based

only on an a priori knowledge of the statistics of the per-

turbing noise does not appreciably reduce the standard deviations

of the state components at the final time. For this reason, it

can be concluded that the control mJst be updated throughout the

controlling interval if the terminal state is to satisfy

approximately the terminal constraints.

3. The stochastic control deviation is highly dependent on the

variance and correlation time of the noise, and whether it

occurs in the thrust mgnitude and/or the thrust direction

angle.

4. In the case of the Earth-Mars transfer, the presence of noise

in the thrust angle increases the expected value of the transfer

time, while the presence of noise in the thrust magnitude slightly

decreases the expected value of the transfer time.
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The results, presented in (hapter 5, of updating the control

program by the use of observation values made available to the controller

during the controlling interval are summarized in the following state-

ments:

1. The corrective control program based on the observed values

of range-rate measurements appears to guido a simulated tra-

jectory in such a manner that the terminal constraints are

satisfied reasonably. However, if the control is not

corrected early in the controlling interval, then the control

corrections required late in the interval become very large.

2. The results indicate that, in the case of highly auto-

correlated noise, there may be COCLsiderable advantage in

computing the conditional mean of the perturbing noise as

well as the conditional means of the state.

Unique Contributions of the Investigation

Some of the aspects of this study which are different from previous

work in this area, are listed below.

1. The consideration of a nonlinear dynamic system perturbed

by noise which is autocorrelated in time is an important step

toward finding statistical models which accurately represent

physical phenomena. Previous studies have mainly been

concerned with systems perturbed by uncorrelated, or '_hite"

noise. The white noise assumption may be an adequate

approximation for representing the statistical properties of

some external disturbances, but it is doubtful if it is
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adequate for representing perturbing effects, such as

electrical or mechanical malfunctions, in the controls of

a dynamic system.

2. The expansion technique described in Ompter 3, which was

used to derive differential equations for the mean state

deviations from the deterministic trajectory when the

dynamic system is subjected to perturbing noise, is, to

the author's knowledge, original in this study. The

inclusion of the nonlinear (quadratic) terms in the investi-

gation which deals with continuously occurring noise has

not been considered heretofore.

3. To the author's knowledge, this is the first work in which

the stochastic calculus of variations has been applied

to a variable final time problem, with constraints imposed

on the statistics of the state at the initial and final

times° Furthermore, the expansion technique described in

Chapter 4, which was used for finding approximate equations

for the necessary conditions of the variational problem,

is an original development.

4. The procedure described in Ompter 5 for finding conditional

means by an expansion about a deterministic value is new.

The concept of computing the conditional mean of the per-

turbing noise as well as the conditional means of the state

deviations, in order to compute an optimal corrective control,

is original in this study.

5. The nmmrical results obtained in the simulated study of the

interplanetary space guidance problem are the first to be
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presented for continuously occurring noise.

P_comendations for Further Study

areas:

It is recommended that the study be extended to the follo_ng

1. The effects of different types of noise cn nonlinear

dynamic systems should be investigated. In particular, the

studies should include the analysis of random external

effects and unknown model parameters.

2. The sensitivity of the control procedure to different types

of observations should be investigated. In particular, the

problem of implementing continuous control program corrections

on the basis of information obtained from continuous observations.

should be considered. Internal measurements of the perturbing

noise itself could also be considered.

5. Different approaches to the entire problem of optimal

stochastic control should be studied. The dynamic programming

method is sn alternate approach which appears promising. If

the joint probability density function of the system state

could be easily computed, other statistical perfonmnce

indices for optimlity could be cc__sidered.
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APPENDIX A

THE _ OF VARIATIONS APPLIED TO

OPTIM_ IETBHMINISTIC _L

The problem considered in the theory of optimal deterministic

cmtrol is that of finding a set of admissible controls, ui(t ) ,

i = 1, ..., m, which govern a controllable dynamic system whose

differential equations of motion are

xi = fi (x'u't) i = I, ... n (A.I)

in such a manner that

is an extremt_.

history xi(t )

constraints

t£

I[u] = ffn÷i x,u.t)
to

dt (A.2)

For a control to be admissible, it must lead to a state

which satisfies the following initial and terminal

xi(t0) = xi0

xiCtf) = xif CA.3)

When the calculus of variations is applied to the problem of optimal

control, the Equation (A.1) is adjoined to the functional given in

Equation (A.2) with time dependent Lagrange multipliers Pi(t), and

the initial and terminal constraints given in Equation (A.3) are
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adjoined to the Rmctional with constants _i and v i. Hence the

extremal value of I [u] is £o_md by extremizing the augmented

integral J[u], where

171

J[u] = vi(x(tf)-xif ) + .i(xi(t0)-xi0) +

t£

f fn÷l(X,U,t) Pi(xi-fi) (A.4)
÷ dt

to

The generalized Hamiltcnian associated with the variational problem

is comnxmly defined as

H{x,u,p,t) = Pifi - fn+l (A.S)

and the functional to be extrmaized can be written

J[u] = vi(xi(tf)-xif ) + vi(xi(t0)-xi0 )

tf¢,

+ I pi_i - a dt (A.6)
.l

to

It is now assumed that the optimal control and the resulting

optimal trajectory are denoted by

ui (t), x i (t), tf , Pi (t), "i ' vi

where
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xi = fi(x ,u ,t)

xi CtO) = xi0

xi (tf) = xif (A.7)

The introduction of the Pi'S enables one to treat the

xi's and ui's independently. Let the solution

ui' xi' Pi' tf, vi, "i

be an arbitrary trajectory neighboring the optimal solution. This

neighboring solution can be expressed in terms of the op_timal

solution by the following relations

xi = xi + c 6xi tf - tf + c 6if

ui = ui + z 6ui Pi = _i + e 6_i

Pi = Pi + c 6pi vi = vi + e 6_i (A.8)

where 6xi, 6ui, and 6pi , are arbitrary independent functions of

time, and 6_i, 6_i, and 6tf, are arbitrary independent constants.

e is a small parameter. The functional J[u] is now seen to be a

function of the parameter e for any set of functions 6xi , 6ui,

_Pi' 6_i' 6_i and 6£f. The necessary condition for optimality of

the control u. (t) is
1
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--o¢=0 (A.9)

By carrying out the differentiation with respect to

Equation (A.6), the following expression is obtained

dxi(t f) dxi(t 0) IE:0_I¢=0 = vi de lc=0 + _i d_ +

E_--IE=O (xi(tf)-Xif) + E=O (xi(to)'Xio) +

dtfl
(Pixi "H)

t£

+ i E_- I¢=0 +

dx i dui

Pi ¢=0

(A.10)

It will be convenient to express Equation (A.10) in terms of the

arbitrary functions defined in Equations (A.8). By taking the

derivatives of Equations (A.B) with respect to ¢, the following

identities can be derived:

_[ = d"ie--O 6xi _---I¢=0 = 6_i

c=0 = 6ui _--lc=0 = 6'vi

¢=0 = _Pi it_-'lc=O = _tf. (A.11)
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Now consider the first of Equations (A.8) evaluated at t£

xi(t f) -- x i (tf) + ¢ 6Ki(t f) (A.R)

The quantity xi(tf) can be approximated by the following

expression

* . * *

xi(tf) = xi(t f ) + xi(t f )(tf-tf ) (A.13)

If Equation (A.12) is substituted into Equation (A.13), the £ollow-

ing expression for xi(t £) is obtained

xi(t £) = xi Ctf) + e[6KiCt f) + xi(t£) 6t£] CA.14)

By taking the derivative of Equati_ (A.14) with respect to e, the

foll_ing relation is derived,

dxi (tf) ,- , . *
de le=O = 6xi(tf ) + xi(tf ) 6t£ (A.I5)

If Equations (A.11) and (A.15) are substituted into the expression

given in Equation (A.IO), and the first tern under the integral is

integrated by parts, then the following expression is obtained
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6J = [vi+ Pi(tf)l[6xi(tf)+}i6tf] + [,i-Pi(t0) ] 6_i(t0 ) +

where

6_i(xi(tf)-xif) + 6vi(xi(t0)-xi0) - H(tf) 6tf -

tf(_-Hpi)_pi + (_i÷H_)6%+_H_i6% dt
t D

(A.16)

6J = _Ic=0 (A.17)

By the fundamsntal lemma of the calculus of variations, the arbitrary

nature of the terms 6_i, 6ui, 6pi, 6_i, 6vi, and 6tf, imply that

their coefficients v_nish identicm!ly. Thus the conditions necessary

* * * #t * #t

for the set xi ' ui ' Pi ' "i ' vi ' tf , to be an extremal solution

ate

_i-H.v = 0 (A.18)
i

_i+Hxi = 0 (A.19)

Hu. = o (A.20)
1

at all points of time in the controlling interval to <_ t <_ tf,

xi(to) = xi0 (A.Zl)

Pi(t0 ) : _i (A.22)
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at the initial time t0, and

xi(tf) = xif (A.25)

pi(tp --""i (A.24)

H(tf) = 0 (A.25)

at the terminal time tf.

Equation (A.20) can be used to eliminate ui(t) from Equation

(A.18) and (A.19). The 2n equations, i.e., Equations (A.18) and

(A.19), then £orm a two point boundary value problem with 2n+l

split end conditions, i.e., Equations (A.21) and (A.22), at t 0,

and Equations (A.23), (A.24), and (A.25) at tf. The problem can be

solved for the values of the 2n unknown constants "i and _i'

and for the final time tf, by one of several existing nmaerical

methods.

In applying the calculus of variations technique the Earth-

Mars transfer problem, the transfer time, i.e.,

tf

I[u] = flat

to

is minimized subject to the differential equations of motion

(A.Z6)

2
- V $*-_ + a Sins

r r

_ vu + a cosa
r
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1" ffi U

. v_ (A.27)
r

T

_th a - mo-_'t-tO'L J

The conditi_s at the final time are

u(tf) = o

v(tf) - VM (velocity of Mars)

r(t£) = RM (radiusof Martian Orbit)

(A.ZS)

and the conditions at the initial tim are

u(t0) = 0

v(t0) - VF. (velocity of Earth

r(t 0) = _ (radius of Earth's orbit)

e(to) = 0 (A.29)

e is allowed to be unconstrained at the final time, hence the launch

time will be selected, after the final solution is detemined, in order

to assure proper rendezvous configuration at Mars.
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The integral to be extremized is

J[a] = VlCUCt£)) + v2(vCtf)-V _ + v3(r(t£)-_ +

ulCuCt0)) + _2CvCt0)-VE) ÷ u3CrCt0)-RE) + u4CeCt0) ) +

tf

f Pl (_ - v2-
1+ ur -2 " a sina) + p2(_ + uv

to r r - a cosa)

+ P3(r-u) + P4CO-_) dt (A.30)

The resulting necessary conditions are

P2 v
i_! = T" P3

2PlV P2 u P4
m ÷

_2 r r r

v 2 2uP 1 P2 uv P4 v

: p17-7-7 ÷ 7

P4 _ o (A.31)

PlCOSa-P2Sina = 0 (A.32)

and _ations (A.27), in the controlling interval t O L t L tf,

Pl(tO) = u1

P2(to )_ = u
2

P3(to ) = _3

P4(to ) = u4 (A.33)



179

and Equations (A.29), at the initial tim to, and

Pl(t£) = -v 1

pz(tf) = -v z

p3(tf) = -v 3

p4Ctf) * o

pl(_ - - _ + a sina)+p2(- _- + a cosa)+P3U+ p tf
= 1 (A.34)

and _tuatior_ (A.28), at the teminal time tf.

Equation (A.32) leads to the following relations

Pl P2
Sillo. = COS_ -

+/plZ+P2 z +/plZ+P2 z

(a.3s)

Note: An analysis of the second variation of the functional J[u]

leads to the selection of the plus signs for the radicals in

Equations (A.35).

The necessary condition then redace to the set o£ equations

v2

= _- - r-Z+ a

= .uv+ a
T

= u

v
r

Pl
ill i

/ p12+p22

P2
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P2v
Pl - r P3

2PlV P2u P4
6
-2 r r r

v2 2uP I P2 uv P4v

b3 -- P17-7-7+7

P4 = 0 (A.36)

with a =

T

mo-_(t-t O)

at all points o£ time in the interval to < t <_ tf, Equations (A.29)

and (A.33) at the initial time to, and Equatiorts (A.28) and (A.34)

at the term£nal time tf. Figure A.I 111ustrates the t£me histories

of the quantities u, v, r, e, Pl' P2' P3 and P4 for the con-

verged optimal solution. Figure A.2 illustrates the time history o£

the optimal control angle a(t).
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APPENDIX B

MATRIX FOI_L_ATION OF THE

EQUATIONS FOR THE EARTH-MARS

TRANSFER PI_OBLEM

The terms in the equatims for the Earth-Mars transfer problem are

listed below in matrix notation. The notation is defined by the

following example.

If

j=l,..., m, then the components of

ing manner

Aij is an nm dimensional quantity, i.e., i=l, ..., n,

Aij can be listed in the follow-

• . . Alm

D

All

Anl

A12

5z

Chapter 3_

m I

U

[xil = Vr [uil = [a]

o

183
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2
V" ]J
_'- - -'2"+ a sina

1"

UV

1" + a C0S¢{

U

V

1"

J

6u

6v

6r

6e

n i

D u

n
a

m

2
° a

0

m

2
o

Bij

0

m

0

B
¢I

I

B

0

V

I"

1

0

B

2v v 2_-- --,2-+
1" 1"

U VU

1" 1"
0

0 0 0

1 v
_" --2" o

T
J
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2v
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0

0

1
r

v

Z

0

1

r

0

U

7

0

V

2vu
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r
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0

0
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1
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0 0 0

0 0 1

1 2v

7 7

0 0 0

0

0

0

0

[o° °s l vuu I°
sQ -asin_ L z Jd ina -acos_J

i

6u

++Ej = E _r

6o
m

0 0

0 0

6u 6v 6r 6e ]
E

m

0

0

6u

6v

6r

68

m

0

0

Chapter 4

6ui]

0

-- m

Pl

P2

P3

P4 I

6P 2
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v2 u v

-- pl(-_- r-_+ asin_) + p2 (- vu + a cos_0 + +-_ P3 u P4 r"

187

m

P2 v

r + P5

2PlY

r

ply 2

"-"'2-
r

0

P2u P4

T r

2 Pl P2 ur

r r

H
Pi

H
Pl a cos_ - P2 a s_

0 P2 vP2

-T 7

P2 2Pl

r r

P2 v uP 2"p4-2vp 1

7 r2

uP 2-P4-2vp I
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2(PlV2+P4v-P2VU)

3
r

0 0 0

6_P 4
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r

0

0

0
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H

xipj fix i
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Pl cosa - P2 sin_ ,
-PlaS_ - P2 a cosa]

a cosa _ - a sinai

.=

I

0

"Pl sin_ - P2 cosa
I

I

-Plsina - P2cosa

r

LHuiPj ]

I

COS

-a sina

i

-sim,a 0 0

-a cosa 0 0
i

I
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0

0

0
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I
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7
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r

0

P2

7

""2"
r

2(2VPl+P 4)

r3

0

i

0

0

0
i

0

0

0



0

P2

-Z
r

2P2V

---3
r

0

P2
-2"
r

_ 2P1

-2-
r

2 (2PlV+p4-pSu)

3
r

0

2l_2v

-7
2 (2Ply+p4-p2 u)

3
r

24_p 1 6(PlV2+P4v-P2UV)

g 4
r r

0

189

0

0

exixj]

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0



190

0

0 .

0

0

1
r

V

-Z
r

0

0

0

0

0

0

0

0

2

r

2v

-7

0

1
r

0

U

-Z
r

0

1
--_

r

0

0

2v

7

V

-Z
r

u

7

2uv
T
r

0

0

0

0

1

2v.

r_

0 0 0 0



191

m

0

0

0

0 0

0

0

0

0

ENij I

I m

8U

6V

E
6r

88
h u

= E

8P 1

6P 2

8P 3

6P 4

Chapter 5

Yi = _ gi =

u [r- Rcos (O-_ (t-to)) ] +rR( v -_) sin (o-,,,(t-to))

• 6Yi : _;



gr

%

go :

r-R cos (0-_(t-to))

192

R sin(o-,,,(t-to) )

v _,.,)+ Rv sin( y ) _guu+R sin( y ) (_ _-

0 P

uRsin(y ) + R(v-:r)cos(y) _rgr

0 0

SXi]

I

6u

6%"

61"

8O

6P 1

6P2

6P3

6P4

11a

11
ol

M

[q
b,] o [q

•_ _ u



APPENDIX C

_RICAL CONSTANTS FOR THE EAR'IIq-_AS TRANSFER PROBLEM

Numerical .Constants in MKS System of Units

Orbital Radius of Earth, RE =

Velocity of Earth, VE =

Orbital Radius of Mars, RM =

Velocity of Mars, VM =

Angular Velocity of Earth, _ =

Gravitational Constant of Sun, _ =

Initial Spacecraft Mass, m0 =

Mass Flow Rate, m =

Thrust, T

11
1.4959870 x 10 Meters

2.9784901 x 104 Meters/second

11
2.2794040 x 10 Meters

2.4129561 x 104 Meters/second

1.9909866 x i0-7 Radians/second

1.3271504 x 1020 Meters3/second 2

6.7978852 x I03 Kilograms

1.0123858 x 10 -5 Kilograms/second

= 4.0312370 Newtons

Normalization Scheme

Unit of Izngth =

Unit of Velocity --

Unit of Mass

1RE, 1AU

lvE- 
lm o

Normalized Values of the Numerical Constants

Initial Spacecraft Radius =

Initial Spacecraft Velocity =

Terminal Spacecraft Radius =

Terminal Spacecraft Velocity =

Angular Velocity of Earth =

1.0

1.0

i.5236790

O. 81012728

1.0
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Normalized Value_____sso_ffth___eNumerical Constants - (continued)

Gravitational Constant of Sun =

Initial Spacecraft Mass

Mass Flow Rate =

Thrust

1.0

1.0

0.074800391

0.14012969



APPENDIX D

A THEOREM F_ PROBABILITY THEORY

Consider the set of random variables x, YI' Y2' Y3' ""' YN

that are distributed according to the joint probability density

function f(x,Yl, Y2' ""' YN )" The conditional expectation of the

product P(Yl)X , where P(yl) is some function of YI' given

Y2' )'5" ""' YN is defined as follows

--m --m

,.o., YN) dxdy 1

(D.I)

I
wh_ere

f(x, Yl I Y2' "'" YN) is the joint conditional probability

density function of x, Yl given Y2' ""' YN" By the definition of

the conditional density function {see Ref. 11), the following relation

ca be _tten

f(x'Yl 'Y2'""" 'YN)

f(x'Yl Y2""'YN ) -- f(y2,yl,...,yH) (D.Z)

Equation (D.2)can be written in the fore

f(x,Y 1 {Yz,-..,YN )

f(x'Yl 'Y2'""" 'YN )

f(Yl"'" 'YN)

f(Yl ,o.o ,YN )

" f(Y2 °°" 'YN) .(D.3)
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and from the definition of the conditional density function, Equation

(D.3) reduces to the following relation

f(x,Y I ] Y2,-..,YN) : f(x[Yl,...,yN)f(YI[Y2,-..,YN) (D.4)

By substituting Equation (D.4) into the integral in Equation (D.1),

the following expression is obtained

(D.S)

Rearranging Equation (D.5) leads to the following relation

-® -® (D.6)

By the definition of the expected value operation,Equation (D.6) reduces

to the following equation

Y2''"'YN] (D.7)

In the notation of Chapter 5, Equation (D. 7) can be generalized to

the following form
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)EC_xiCtk) lYctk),YCtk_I),... ,yCtl)) I Y(tk_ 1) ,yCtk_2),
•.. ,Y(tl)1

CS.8)



APPENDIX E

THE DIFFERENTIAL EQUATION FOR THE GENERALIZED COVARIANCE

Consider Equations {5.17) and (5.19) from Chapter S. The

equations can.be written as £ollows

1

fiuju kc6uj6uk+6ujnk+nj6uk+Rjk ) + fixju k (:6xj6Uk+hj k) (E.1)

+ (6x-'i6Uk+hik) .fju k (E.2)

Now consider the covariance of the state Pij' which is defined by the

following expression

Pij -- Mij - 6xi6xj (E.3)

In view of Equations CE. I) and CE.2), the derivative of Pij with

respect to time can be written in the £ollowing manner

Pij = Mij-6xi6_j-6xi6xj -'-fixkMJk

+ _k Ox k + fiukC6Uk6Xj+hjk)
(E.4)
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÷ C6_-_k÷h_k)fJ"k" _[ fJ_k6_k÷f _Uk÷_k)]J_k

In view of Equation (E.3), Equation (E.4) reduces to the following

expression

Pij = fiXkhk + Pik fix k + fiuk(hjk'6xjn-k) + (hik-6_fn-k) fju k
(E.S)

In a manner similar to the manner in which Equation (E.5) was derived,

Equations (5,18) and (5.20) may be used to derive the following

expressic_

_t (Nij-6xi6Pj) = fiXk_kj-6xk6P j) - (Nik-6xi6P k) fix k

+ PikHxkxj + fiuk(fJk-6Pj_ k)
(E.6)

In a similar manner the £ollowing equations can be derived from

Equations (5.21) and (5.22).
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+ (hik-6xi_-k) Bkj (E. 7)

- g (fkj- 6Pk_j) -(fik-6Pin-k ) Bkj
xiPj

(E.8)

By recalling the definition of the generalized covariance Pij' i.e.,

Equation (5.38), the set of Equations (E.4), (E.S), (E.6), (E.7), and

(E.8) can be generalized to the following equation

Pij = rikPkj + Pik rjk (F..9)

where rij is a (2n+m)

following relations

2
dimssimal quantity which is defined by the

rij -- fix.
3

rij = 0

rij = fiuj_2n

i-l, ...,n

j =i, ...,n

i=l, ...,n

j = n+l, ..., 2n

i=l, ...,n

j = 2/I+1, .oo, 2n+m
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rij - " HXi-nPj-n

rij " ""xi-nuj-:n

rij = 0

ri j = 0

rij _ -Bi.2nj-zn

= I%+1, ...,

j--l, ...,n

i --n+l, ...,

2n

2n

j = n+l, ..., 2n

i = n+l, ..., Zn

j = 2n+l, ..-, 2n+m

i = Zn+l, ..', 2n+m

j=l, ...,n

i = 2n+l, ..., 2n+m

j = n+l, ..., 2n

i = 2n÷l, ••-, Zn+m

j = 2n+l, ..., 2n+m
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